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P£#FACE

Anyone who has thoughtfully taught the subject of acoustics for any

length of time must surely be struck by the basic nature of the material,

both in the fields of pure and of applied physics. For the student who has

completed a general college course in physics there is hardly a better

starting point for more advanced study. A course in acoustics very

naturally begins with a study of vibrations, as preliminary to the intro-

duction of the wave equations. It is impossible to overemphasize the

importance of the two subjects— vibrations and waves— to all branches

of physics and engineering. In addition, there are distinct advantages in

first discussing waves of the mechanical type, rather than electromagnetic

waves, with their more abstract nature and added subtleties.

Of growing importance during the last ten or twenty years is the very

fruitful use of electrical analogs in acoustics. Electrical engineers are most

aware of the extreme usefulness of the analog method, particularly in prob-

lems originating during World War II. In a book of this type no attempt

can be made to give a complete treatment, even in the field of acoustics

alone, of the use of analogs taken from electrical circuits. However, the

author believes that so useful a tool in this and other branches of physics

and engineering should be given more attention than is ordinarily afforded

in an intermediate text.

In connection with these more quantitative aspects of the subject, it

might be said that the great difficulty of setting down the features of most
actual acoustical problems in precise mathematical form is of great instruc-

tive value to the physics student. Coming fresh from more elementary

courses, where the problems supply just the necessary data to achieve the

exact answer, he may be appalled at the extent to which approximations

must be made to get any kind of an answer at all in acoustical problems.

Experience of this kind is good preparation for the later practical use of,

say, electromagnetic field equations which involve complicated boundary
conditions, where the mathematical problems are very similar. A course

in acoustics may incidentally serve to discourage a pure mathematician,

to whom some of the approximations of physics are anathema, from enter-

ing upon a career unsuited to his temperament and point of view.

The average undergraduate is greatly interested in many of the more
popular and applied features of the subject. Among these are the physics

of musical instruments, peculiarities of hearing, the design of radio loud-

speakers, some consideration of electronic devices as used in electro-

acoustical equipment, the acoustics of auditoriums, etc. As one whose
interest in acoustics was originally aroused, in part, by a love of music, the
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author believes no text in acoustics should omit some reference to these

subjects, which are as essential in their way as a consideration of the wave
equations.

There are a number of elementary books on acoustics published in this

country, of which Colby and Watson are good examples. Above this level

there is quite a choice of specialized books on the engineering or graduate

level. By far the most original and thoughtful general book on acoustics

is Morse's Vibration and Sound. While of considerable use as a reference,

this book is too difficult as a whole for undergraduate use. Chapter 5 has

drawn generously upon certain parts of Morse. Mention should also be

made of Acoustic Measurements by L. L. Beranek, an excellent survey of

modern experimental techniques in acoustics. In Chapter 10 frequent

reference is made to Beranek's work. There is practically no book avail-

able at the intermediate level except for the British imports, and it is

hoped that the present book will help to fill the gap.

A year of college physics and a year of calculus constitute a minimum
preparation for the subject as presented here. A previous knowledge of

the complex notation, as used in a.c. circuit analysis, would be helpful, but

Chapter 5 contains a summary of the essential material sufficient to the

understanding of the text. While the book has been written mainly for

undergraduates in physics, it is believed that engineering students who may
later wish to specialize in communications and electroacoustics would

greatly profit from a basic course using this kind of book.

The author wishes to thank Professor Francis W. Sears for his kind

interest in this project and to express his gratitude to Professor A. Wilson

Nolle of the Department of Physics, University of Texas, for his careful

and critical reading of the manuscript and his many helpful suggestions on

matters of precision and clarity.

Robert H. Randall

April, 1951
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INTRODUCTION

There is no branch of classical physics that is older in its origins and yet

more modern in its applications than that of acoustics. As long ago as the

time of Galileo, quantitative experiments were performed on the vibrations

of strings and the sound that is so produced. Boyle, Hooke, and Newton

were interested in sound, and Newton undertook to compute, theoretically,

its speed. Later on, the great mathematicians Laplace, Euler, d'Alembert,

Bernoulli, Lagrange, and Poisson laid the bases for what was to become

the general subject of hydrodynamics, although there was a great scarcity

of experimental data with which to test their conclusions. In the nine-

teenth century, the results of the experiments of Doppler, Kundt, Kelvin,

and others added to the growing body of the subject. Helmholtz, that

Leonardo da Vinci of modern times, wrote his monumental work, the

Sensations of Tone, largely from the physiological approach. Late in the

nineteenth and during the early twentieth century, finishing touches to

the already elegant formulation of the mechanics of sound propagation

were added by Rayleigh and Lamb, whose writings on the subject have

become "standard" treatises.

Along with this continuous scientific preoccupation with the problems of

acoustics has gone a very lively interest, among laymen as well as among

scientists, in the more qualitative aspects of the subject. Musicians are

closer to science than they perhaps realize when they play musical instru-

ments and wonder as to the quality of the sound flowing from them. Lay-

men of all kinds are interested in speech and song, music and noise. These

are, it would appear, permanent interests which will probably persist, even

with the competing glamour of the atom and its nucleus!

With the beginning of the twentieth century it would have been safe to

say that the subject of acoustics was as nearly complete as it would ever

be. Even were this so, a study of acoustics would still be a "must" for

the proper understanding of the great body of related scientific literature.

Vibrations, whether connected with strings and diaphragms or with sub-

atomic oscillators radiating electromagnetic waves, are all of a kind, and

to understand the one type is a great help towards understanding the other.

In addition, the "fields" of sound and the "fields" of electromagnetic

radiation are kindred in more ways than one, with the former a preferred

starting point from the standpoint of concreteness and simplicity.

Two developments in the field of applied acoustics have given impetus,

in recent years, to further study and growth of the subject. The first is

the rise of a whole new industry, devoted to the realistic reproduction of

speech and music through the mediums of the radio and the phonograph.

1



2 INTRODUCTION

The second, less beneficent in nature, arose as the result of war needs, both

in the field of undersea signaling and in connection with problems in aero-

nautics. As so often occurs when interest in a subject revives, other fields,

like those of medicine and pure physics, have been stimulated to make use

of new tools and new refinements of the older theoretical work. Thought-

ful comparison between acoustics and other branches of physics and engi-

neering has brought to light little realized interrelations, of great use to all

fields concerned. The electrical circuit analogs discussed in Chapter 5 are

a good example of this.

As an introduction to a logical presentation of the subject, a broad out-

line of the scope of acoustics, together with a certain definition of terms,

will be helpful.

1-1 Sound vs acoustics. In the strict sense, the word sound should be

used only in connection with effects directly perceivable by the human ear.

These effects are ordinarily due to the wave motion set up in air by the

vibration of material bodies, the frequencies which are audible to the ear

being in the approximate range of 30 to 15,000 cycles/sec. In this book

we shall consider the word sound to cover the entire wave phenomena in

air of this frequency range and we shall use it as a qualifying adjective

in connection with such wave properties as " particle displacement,"

"excess pressure," and the like. Whenever the frequencies are well out-

side the above range, we shall call the disturbance a longitudinal wave,

rather than a sound. Waves set up in media other than air we shall also

not call sound, since the ear is not ordinarily capable of responding to this

type of energy directly. Waves set up within solid rods, crystals, etc., are

of this type.

For no very good reason, the word acoustics, originally associated with

the sound properties of rooms, auditoriums, etc., has been broadened to

include almost the whole field of mechanical vibration and waves, whether

of audible frequencies or not, and without regard to the medium. While

the emphasis is still on what can be heard, many of the most interesting

recent applications in acoustics are concerned with a range of frequencies

well outside the audible range, particularly in the ultrasonic (high-fre-

quency) region. Some of these applications will be discussed later in this

book.

1-2 Vibrating bodies. Before there can be sound waves in air, there

must be vibration of some material body. The character of the sound is

so dependent upon the nature of this vibration that a careful study of the

possible kinds of vibration is imperative. The simplest type of vibration

to discuss is that of an idealized particle. Under certain special conditions,
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as will be seen, actual sound sources may be discussed as if they were par-

ticles. More often than not, due to the complexity of shape and motion

of actual sound sources, such a simple picture is inadequate. Neverthe-

less, a consideration of particle vibration theory is basic to the understand-

ing of the more complicated motions of extended bodies such as strings,

bars, plates, etc., to be considered later.

1-3 Frequency. The frequency of a vibrating source of sound is the

repetition rate of its periodic motion, assuming this to be simple harmonic.

It is usually specified in cycles per unit time. In the wave phenomenon

set up in the air, frequency refers to the vibration rate of layers of air, and

is to be distinguished from pitch, a word used to describe the subjective

sensation perceived by the listener. The sensation of pitch is a psycho-

physiological matter and is only imperfectly understood. As we shall see

in Chapter 9, the relation between frequency and pitch is a complicated one.

The range of frequencies to which a young, healthy ear will respond is

enormous, from possibly as low as 15 cycles/sec to as high as 20,000

cycles/sec. The ear is by no means of equal sensitivity over this frequency

range, but in studying the complex thing called musical sound and in design-

ing modern electrical and electromechanical apparatus to reproduce this

sound, we must cover the extremes of the frequency range of the ear. The

design of such equipment is difficult, as we shall see, and it is only recently

that any considerable success has been achieved.

1-4 Amplitude. The amplitude of any vibratory motion has the usual

meaning associated with simple harmonic motion, i.e., the maximum excur-

sion from the mean central position. Such amplitudes may refer to the

motion of the source, the motion of the receiver of the sound, or the motion

of the layers of air where the wave exists. Everyone knows how a motion

of small amplitude over a sufficiently large area may give rise to tremendous

sound disturbances. At the receiving end, whether it be at the ear or at a

microphone, amplitudes may be unbelievably small. An amplitude of mo-

tion of the air of 10
-8 cm is by no means the least to which the ear will respond.

1-5 Waves. It is one peculiarity of a fluid like air, with little or no

resistance to shear, that only longitudinal waves may be propagated. All

disturbances of any other nature will tend to disappear at a small distance

from the source. A consideration of the elastic and inertial properties of

the medium leads to a beautiful and complete theory of longitudinal wave

propagation which is useful as well as elegant. The great difficulty with

the differential equations for sound waves is in obtaining all the details of

particular solutions to practical problems. Sound sources are rarely

simple or symmetrical in shape, and the irregularities in contour introduce
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serious trouble. Useful solutions may be obtained, if one is willing to ac-

cept certain approximations. As always, approximations are dangerous
and must be made with the utmost care, keeping in mind the essential

physics of the problem. The results of this process might appear to be
crude in many cases, but the student should appreciate that the ear itself

is, fortunately for the analyst, a rather crude device, incapable under ordi-

nary conditions of detecting discrepancies of less than 10% to 20%.

1-6 Wavelength. Frequency in the wave. For disturbances of a
simple harmonic nature, the wavelength is the distance, at any one instant,

between adjacent wave crests. The frequency, within the body of the
wave disturbance, may be defined as the number of crests passing any one
point in space per unit time, and is ordinarily the same as the frequency of

vibration of the source of the wave disturbance. If the source is not sta-

tionary with respect to the medium, the frequency in the wave is not the
same as that of the source. This is a situation that is one cause of the
well-known Doppler effect.

1-7 The principle of superposition. It is a general property of many
mechanical systems that when two different types of motion are impressed
simultaneously, the resultant total motion may be described as the sum
effect of the two motions considered independently. This is one statement
of the Superposition Theorem. It is a very broad principle in physics.

The student of elementary physics has seen the general principle applied
many times in connection with such subjects as the composition of force

vectors, the summing up of assorted emfs in electrical circuits, the inter-

ference effects in light, etc. It will be a correct principle to use whenever
the system is "linear/' that is, whenever its behavior may be accurately
described by a linear differential equation. The vibrations of material
bodies and of the particles in a deformable medium like air obey such
equations, provided the amplitudes of motion are small. Fortunately, this

is usually so in acoustics. We shall make frequent use of the Superposition
Theorem throughout this book.

1-8 Energy density. Intensity in the wave. The average energy per
unit volume in the medium, due to the presence of a wave, is called the
energy density. The intensity in the wave is defined as the energy flow, per
unit time and per unit area, across an area taken normally with respect to
the direction of wave propagation. Energy density and intensity are
simply related through the velocity of wave propagation. Both these
quantities may be computed from measurements made with suitable labora-
tory instruments, whose operation depends in no way upon the properties

of the ear. The student is cautioned not to use the word "loudness" as
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synonymous with " intensity." The loudness of a sound, in the language

of acoustics today, is a measure of the purely subjective sensation arising

when a sound wave strikes the ear. The exact relationship between loud-

ness and intensity is difficult to determine, as one would expect ; the student

is referred to Chapter 9 for a further discussion of this matter. (We are

using " loudness" here in the purely qualitative sense. We shall later refer

to the loudness level, a numerical measure of loudness which is denned

directly in terms of the pressure in the wave disturbance, rather than the

intensity.)

The familiar unit, the decibel, is fundamentally a quantitative measure

of relative (not absolute) intensity, and is used to compare one sound in-

tensity with another. The decibel scale is defined in a logarithmic manner,

as will be seen in Chapter 2, to conform to the approximately logarithmic

behavior of the ear. Its exact meaning and use will be made clear when it

is needed.

1-9 Sound "quality." The quality of a musical note, as played on some

instrument, or coming from a singer's throat, is a most important character-

istic, connected, in part, with the physiological, the psychic, and the aesthetic

in the listener. From a purely objective point of view, it has been common
to explain quality as due solely to the number and prominence of the

steady-state harmonic overtones. There are other factors to be considered,

however. Recent studies by Fletcher have revealed the importance of the

transient period of vibration, the time during which the instrument and

sound vibrations are building up or dying down. There is even evidence

that it is during the transient period of " attack," for instance, that a violin

is recognized as such, rather than as, say, a cello. The ear will apparently

tend to confuse the two instruments when a sustained note is being played.

I-10 The use of electrical analogs. While it is somewhat in the nature

of a digression in the logical development of the subject, the discussion of

sound waves along classical lines will be followed by a brief introduction

to the electrical analog method as applied to acoustics, with chief emphasis

upon the concept of "acoustic radiation impedance." Applied with equal

success in the subject of electromagnetic radiation, this idea, borrowed

from a.c. circuit theory, is of especial aid in predicting the total radiation

of power from a given sound source. It is of considerable assistance in the

design of aperiodic radiators, like radio loudspeakers, where the problem is

too difficult for complete analysis by means of the classical wave equations.

1-11 Waves in solids. Plane longitudinal waves set up in solids are

very similar to such waves in air, with, of course, different elastic and iner-

tial factors. Unlike gases and liquids, solids, with their resistance to shear,
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can sustain transverse vibrations. The simplest of all transverse vibra-
tions for an extended body are those of the ideal flexible string, whose stand-
ing wave characteristics are so important to all stringed instruments. In
fact, a discussion of string vibrations leads quite naturally to a considera-
tion of some design features of the violin, the piano, etc. In only a few
cases, in particular for the piano, is the mathematics capable of pre-
dicting the intensity of some of the more important harmonics that are
so essential to the quality of the emitted sound. The great difficulty in
precisely describing the initial conditions, when the string is struck, plucked,
or bowed, as the case may be, is the main stumbling block to exact analysis!
When it is realized that not only the string properties but also the shape
and complex characteristics of the body of the instrument greatly determine
the nature of the radiated sound, one is ready to accept the fact that the
design of a high quality musical instrument is as much a matter of art as of
science.

The problems of the vibration of membranes, bars, and plates become
progressively more complicated. The more important general features of
such motions will be discussed in Chapter 7.

1-12 Experimental technique. Sound measurements are some of the
more difficult in experimental physics. While sensitive linear microphones
and associated electronic amplifiers are now available, there are always two
major difficulties with their use in a "field" of sound. First, there is the
precise, absolute calibration of the equipment over a wide range of sound
frequencies and intensities. Second, there is the disturbing effect that any
detection device whose dimensions are comparable to the wavelength of the
sound introduces upon the field of sound itself. The errors involved are
somewhat similar to the potential errors encountered in the use of a volt-
meter; one would like to measure the potentials existing before connecting
the meter! In addition, the standing wave patterns set up in any ordinary
room make impossible any accurate measurement of the true radiation
properties of the source itself. One is then driven either to outdoor experi-
ments or to building very elaborate and expensive sound rooms with espe-
cially treated wall surfaces and complicated structural supports. These and
other difficulties will be discussed in the chapter on experimental methods.

1-13 Applied acoustics. Much of the renewed interest in acoustics
has come from the applied field. Music has long felt itself an art to be
insulated as far as possible from the mechanics of science. Yet the advent
of "canned" music, deplored by so many musicians, has stimulated the
scientific study of the quality of sound to the point where it is deemed
possible to create new instruments having tonal qualities undreamed of by
the old masters. It is true that thus far the instruments born of modern



INTRODUCTION 7

science, such as the electronic organ and the like, have aped the older

traditional instruments. But as has been pointed out by Fletcher and

others, the possibilities of sound synthesis have hardly been tapped, and

entirely new instruments without prototype will undoubtedly be evolved.

Acoustics plays an important part in the reproduction of speech and

music through the radio and the phonograph. With the refinements

achieved in the electrical circuit and electronic fields, the importance of

improving the acoustical features of such reproducing systems has become

more and more apparent. As a result, much careful study of loudspeaker

design has been made in recent years. As the musical sophistication of the

general public rises, the results of this study will undoubtedly be realized

in home radios and phonographs of higher acoustical quality.

Other applications of acoustics will be considered in Chapter 12. Vibra-

tions and waves of ultrasonic frequency were first studied in detail by Wood
and Loomis, and also by G. W. Pierce. Since those early experiments,

much quantitative work has added to the knowledge. The general scope

of the war work in connection with underwater signaling is well known.

Industry has found many uses for ultrasonic waves in the testing of ma-

terials. In the realm of pure physics the use of high frequency longitudinal

waves has become a valuable means for the study of interatomic forces in

solids, both at normal temperatures and near the temperature of absolute

zero.

Interest in acoustics has stimulated further study along physiological

lines. In Chapter 9 some of the established facts will be reviewed. While

no attempt can be made in a book of this kind to deal with this aspect of

acoustics exhaustively, enough will be said to impress the student with the

essential unity of science, and the importance of considering related fields

whenever they have some bearing upon the subject at hand.

1-14 Systems of units. The cgs system is universally employed in all

the important acoustical literature of the past, and it is still generally used

in the current writing. Acoustics is concerned primarily with the mechan-

ics of fluids, and for mechanics the cgs system is thoroughly self-consist-

ent. In addition, the centimeter, the gram, the dyne, etc., are units well

adapted to the small scale of acoustical phenomena. With the discussion

of electroacoustical devices, however, a hybrid cgs system becomes neces-

sary. Since the mks system is far better suited to systems containing both

electrical and mechanical features, and since the use of this system is

rapidly becoming common in various branches of physics and engineering,

it seems unwise to ignore it completely in acoustics. The cgs system will

be used, generally, in this book, but occasional reference will be made to

the mks system as well.





CHAPTER 1

FUNDAMENTAL PARTICLE VIBRATION THEORY

The production of sound always involves some vibrating source. Such

a source is often of irregular shape, and rarely do all parts of the vibrating

surface move as a unit. It is the very complexity of the vibration of a

sound source that makes it necessary to consider first the simplest vibrating

body, the particle. The motion of actual sources may approximate that

of a particle, particularly at low frequencies. Whenever this approxima-

tion may not be made, the vibrating surface may be broken up into smaller

areas, infinitesimal if desired, the sum effect of which is equivalent to that

of the total surface area of the actual source. The mathematics of this

summation may be extremely complicated, but approximations will often

lead to useful results.

1-1 Simple harmonic motion of a particle. Simple harmonic motion

originates, in mechanics, because of the existence of some kind of un-

balanced elastic force. With such a force, Newton's second law becomes,

for a particle of mass m, free to move along the a>axis,

mx = —Kx. (1-1)

In the expression on the right for the force, K is called the elastic constant,

and the negative sign indicates that the restoring force always acts towards

the origin. Equation (1-1) may also be written

x = -o?x, (1-2)

where co
2 = K/m. This differential equation completely defines the type

of motion and from it all other properties of simple harmonic motion may
be obtained. By integrating Eq. (1-2) twice, the displacement equation

may be shown to be of the form

x = xm cos (ait + a), (1-3)

where xm is the amplitude of the motion and a is called the phase angle.

The quantities xm and a are essentially constants of integration, whose

values depend upon the mathematical boundary conditions. They may
easily be determined, for instance, if one knows the value of x and of the

velocity, x, at either the time t = 0, or at any other specific value of the

time. Whether the cosine or the sine function appears in Eq. (1-3) is

dependent upon these boundary conditions. If, for instance, a turns out

to be ±7t/2, Eq. (1-3) may be written in the sine form. The angular

frequency, co, is equal to 2irf, where / is the repetition rate in cycles per unit

time.

9
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Besides the displacement equation, two similar equations for the

velocity, x, and the acceleration, x, are important:

x = —d)Xm sin (oot + a), (1-4)

X = —oyxm COS (ut + a). (1
_
5)

These are obtained by a simple differentiation of Eq. (1-3). All three

equations can also be obtained by considering the projection, on a diameter

of a circle, of the motion of a particle moving around the circle with a con-

stant speed, as is usually shown in elementary physics. The phase rela-

tionship is apparent from Eqs. (1-3), (1-4), and (1-5). The velocity and

displacement bear a 90° relationship, while acceleration and displacement

are 180° apart. The 90° relationship which always results from differen-

tiating a sine or cosine function will be an important feature of our discus-

sion of sound waves in air, as will be seen later.

1-2 Energy in SHM. In sound, we are always dealing with the vibra-

tion of material bodies, or media having the property of mass, and since

the particle being considered is moving, it will, in general, have a kinetic

energy equal to Jm(x) 2
. This energy varies with the velocity, being zero

at the ends of the motion, where x = xm ,
and a maximum when the particle

is passing through the position x = 0. Since no dissipative force is being

considered, the total energy of the system must remain constant. There-

fore when the kinetic energy decreases, as the particle approaches x = xm ,

the potential energy must increase. Clearly, the maximum potential

energy must equal the maximum kinetic energy. The maximum potential

energy, (Ep)m = I Kx dx = \Kx2
m . It is easy to show that this energy

is equal to the maximum kinetic energy, (Ek)m ,
possessed by the particle

when it is moving through the central position. For, if xm is the maximum
velocity,

,:i _ l jr fegJ(Ep)m = iKxi = ±K-^ = i m(xmy = (Ek)m . (1-6)

At positions other than the central one and the extreme end points, the

energy is partly kinetic and partly potential. The total energy of the sys-

tem may obviously be taken as either the maximum potential energy or the

maximum kinetic energy. Using the latter,

tftotai = Mxm)
2 = \m^x2

m = \m{\^)Px2
m . (1-7)

It is interesting to note that for particles of equal mass executing simple

harmonic motions of the same energy but of different frequencies, the

amplitudes must be inversely proportional to the frequency. The paper

cone of a radio loudspeaker, fed with the same energy at a variety of fre-
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quencies, will have imperceptible amplitudes at the high audible fre-

quencies, whereas at low frequencies, visible amplitudes of as much as a

millimeter or two may easily occur.

1-3 Combinations of SHM's along the same straight line. The

combination of several collinear simple harmonic vibrations may be

discussed either analytically or, more conveniently, by use of the graphical

method commonly employed in a.c. circuit theory. This method is funda-

mentally based on the rectilinear projection of uniform circular motion,

so often used in elementary physics to introduce SHM. In Fig. 1-1 the

length of the vector represents the amplitude of the motion, xm . The

vector is conventionally assumed to rotate counterclockwise at the angular

rate, o> (in radians per second). It is clear that the expression for the

instantaneous projection of this vector, i.e., xm cos(otf + a), where a is the

starting angle at t = 0, is identical with the displacement equation for

SHM, Eq. (1-3).

Suppose, now, that we wish to represent the simultaneous execution,

by a particle, of several SHM's along x, of differing amplitude, frequency,

and phase angle. Each of these separate motions may be represented

as the projection of an appropriate rotating vector. The simplest case to

consider is when the frequencies are the same. The total displacement

of the particle is

Xr = Xi + X2 + ' ' ' + Xn ,

where Xi, x2 , etc., represent the separate displacements. Since all angular

frequencies are the same, the relative angles between the different ampli-

tude vectors are maintained at all times. Therefore it is possible at any

time, such as at time t = 0, to sum up vectorially the several amplitude

vectors and to consider the total motion, x, to be simply the projection of

this resultant upon the x-axis. In Fig. 1-2 two amplitude vectors (xm)i

and (xm)2 are drawn for the time t = 0. The magnitude of the resultant

x=xmcos(«t+a)

Fig. 1-1. Polar represen-

tation of SHM.
Fig. 1-2. Amplitude summa-

tion for two SHM's of the same
frequency.
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vector, (xm) r , may be obtained most simply by finding its x- and ^-compo-

nents, as is done in mechanics with force vectors

:

Also,

(Xm) r = V[2«)J 2 + [2(Xm)y]
2

. (1-8)

tan ar =
2(sm) s

where S(a:m) x and X(xm) y are the sums of the x- and ^/-components of the

separate amplitude vectors at the time t = 0. The total motion, xr , may
then be written:

xr = (xm)r cos {oit + ar). (1-9)

It is seen that such a combination of SHM's is always equivalent to a

single pure SHM. This is a fact of fundamental practical importance in

the production of music. In the first violin section of an orchestra, for

instance, while at a' given instant all violins are presumably playing at the

same frequency and with approximately the same amplitudes, the relative

phases are quite randomly related. Since these relative phases un-

doubtedly are shifting continuously due to slight frequency variations, the

phase of the sum effect at the ear is also changing. As we shall see later,

the ear ordinarily is insensitive to phase effects in music, and in the case

of the violinists, only a single note of the common approximate frequency

is heard.

This vector method of summing up SHM's of the same frequency but

of differing phase will prove very useful in Chapter 4 in the consideration

of sound diffraction.

Example. Reduce the following two collinear SHM's to a single equivalent

vibration, finding the amplitude and the phase angle.

5 cos (cat + 65°),

7 cos M + 30°).

The two amplitude vectors are located at the time

t = 0, as in Fig. 1-3. Making use of the cosine law,

the resultant amplitude, (xm)r, may be found directly:

(xm) r
=V(5) 2 +(7) 2 + 2(5)(7)cos35° = 11.4

Or, using the x- and ^/-components

:

2(xm)x = 5 cos 65° + 7 cos 30° = 8.18.

^(xm)y = 5 sin 65° + 7 sin 30° = 8.03,

\xm)

Fig. 1-3.

V[2(zm)J2 + [S(xm),]
2 =V(8.18) 2 +(8.03) 2 == 11.4.
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angle of the resultant vibration is arctan '2(xm)v/'2(xm)x = arctan

44° 30'. Therefore the equation for xr is

xr = 11.4 cos M + 44° 30').

1-4 Two collinear SHM's whose frequencies differ by a small amount.

Beats. The phenomenon of beats, in sound, is a familiar one. As it is

commonly observed, it is the slow, audible " throbbing," or variation in

intensity, associated with two sounds of nearly the same frequency which

alternately reinforce and partially or completely cancel each other. In

Fig. l-4a are shown two SHM's of slightly different frequency, the ordinate

being the displacement and the abscissa, time. In the presence of two such

sound waves, a layer of air (equivalent to the particle under discussion)

will execute a motion which is the graphical sum of the two separate mo-

tions. In Fig. l-4b is drawn the graphical sum of the curves of Fig. l-4a.

The periodic variation in amplitude, in the case of the sum curve, is to be

expected, in view of the effects observed aurally.

(b)

Fig. 1-4. Beats.
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The two separate SHM'S may be represented analytically as

Xi = (xm)i cos [cat + ofj
[(A»)t+a

2-«j]
(1-10)

and

x2 = (xm) 2 cos [(« + Aco)£ + a2], (1-H)

where Aco is small compared with co. Equa-
tion (1-11) may be rewritten:

£2 = (xm) 2 cos {co£ + [(Aco)t + cc2]]. (1-12)

Fig. 1-5. Both Xi and x2 may be thought of as pro-

jections of rotating vectors, as discussed in

Section 1-3. Since the two amplitude vectors, (xm)i and (xm) 2 , rotate with

nearly the same angular velocity, the term [(A<a)t + a2] in Eq. (1-12) may
be considered as a slowly changing phase angle. When the two vectors are

in the positions shown in Fig. 1-5, the resultant vector, (xm) r , may be com-
puted by means of the cosine law:

(Or = y/(xm)\ + {xm)l + 2{xm) 1{xm) 2 cos [(Aw)* + a2 - ai]. (1-13)

The magnitude of (xm) r will slowly change, as time goes on, due to the

variation of the cosine function in Eq. (1-13) with the time. The maxi-

mum and minimum values of (xm) r will occur when the cosine function is

equal to +1 and —1, respectively. The corresponding values for (xm) r

will be (a;B)i + (xm) 2 and (xm)i - (xm) 2 ,
assuming (xm)i > W2. The

frequency, /&, of this cyclic change in (xm) r is plainly Aco/27r. Since Aw is

the difference between the angular frequencies for the two vibrations, wi

and co2 , fb will equal the difference between the vibration rates, /1 and f2 .

If /1 is nearly equal to /2 , what has been said in the preceding paragraph

regarding the variations in (xm) r will closely describe the variation in the

amplitude of the motion along x, which is the projection of (xm) r . It is the

projection of (xm) r , of course, which represents the instantaneous sum of

Xi and x2, and which directly describes the beat phenomenon. The maxi-

mum value of x = x\ + x2 will vary periodically, at a frequency very close

to the beat frequency, fb, between limits which are very nearly (xm)i + (xm) 2

and (xm)i — (xm) 2 . These are not exact statements, since in general (xm)i

and (xm) 2 will not become coincident when in the horizontal position.

However, since the two amplitude vectors are rotating with nearly the

same angular velocity, it is clear that at whatever angle to the z-axis

coincidence occurs, the two vectors will have only slight relative displace-

ment by the time they do reach the horizontal, and the above statements

are, for all practical purposes, valid. If Aco is quite large compared with

co (not the case in ordinary sound beats) this method of interpretation has

little meaning.



1-5] MATHEMATICAL VS AUDIBLE BEATS 15

1-5 Mathematical vs audible beats. There is an interesting distinction

between what might be called " mathematical " and "audible" beats. It

can be shown that unless the two angular frequencies a>i and co2 are com-

mensurate, that is, unless the w's and therefore the two actual frequencies

/i and/2 bear a whole number ratio, the sum motion will never repeat exactly.

Therefore no recurring beat phenomenon, in the strict mathematical sense,

will exist. In addition, if the whole number relation does exist, each

separate vibration must execute some integral number of cycles before a

repetition of the sum motion can occur. To take numerical examples,

suppose the two frequencies are 406 and 404 cycles/sec, respectively. The

two vibrations will be in phase twice each second. This can readily be seen

by reducing the frequency ratio to the smallest whole number ratio, i.e.,

§£§. If the two frequencies start in phase, after \ second, when they have

executed 203 and 202 cycles respectively, they will be in phase again.

The two beats each second obtained in this way would indicate that the

beat frequency is always /i - /2 . This, however, is not invariably so, for

if the two frequencies were 407 and 404 the difference frequency would

indicate three beats a second, whereas £#£ being already the smallest whole

number ratio, there is a mathematical repetition only once a second.

The above statements can be easily checked by consideration of the

rotating vector example.

The audible effect of beats contains none of the subtleties discussed

above. If two sources initially emit sound waves of the same frequency

and then one frequency is gradually raised, the beat effect begins to occur

smoothly and continuously, with no gaps occurring at discrete frequencies.

This is because the ear is sensitive only to the envelope of the sum function,

as in Fig. l-4b, and an absence of an exact mathematical repetition within

the envelope goes unnoticed.

When the simple difference frequency becomes greater than about ten

per second, the alternation in intensity is no longer observed and, instead,

one receives the impression of a steady sound which is either harmonious or

discordant, depending.. on the frequency interval. (This will be discussed

later in Chapter 9 in connection with consonance and dissonance.) With

ordinary sound intensities a real difference frequency is never observed,

that is, a third musical note is never evident. (With very large sound in-

tensities, it is another matter. See Chapter 9.) This is not surprising,

since there are really only two SHM's involved. The true beat effect is

merely the alternation in intensity of what appears to be one frequency.

1-6 Combinations of more than two SHM's of different frequencies.

From the discussion just concluded, a mixture of frequencies not bearing
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a whole number relation is equivalent to no repetitive steady state vibra-
tion. This situation is not often encountered in problems in sound—
at least one does not usually attempt to analyze problems in which it does
arise. Most musical instruments, fortunately, vibrate in such a way as to
give rise to a " fundamental" tone and " overtones/' all of which bear
whole number ratios to one another, and consequently the over-all vibra-

tion is a repeating function. There is a theorem, due to Fourier, so power-
ful in its ability to analyze such a repeating function into its separate com-
ponent frequencies that it deserves considerable attention in any discussion

of vibration and sound.

1-7 Fourier's theorem. Stated briefly, this theorem asserts that any
single-valued periodic and continuous function may be expressed as a
summation of simple harmonic terms, finite or infinite in number (depend-
ing on the form of the function), whose frequencies are integral multiples

of the repetition rate of the given function.* The restrictions that the
function be single-valued and continuous are easily met in the case of the
vibrations of material bodies, and the theorem is therefore of the greatest

use in acoustics.

The most useful analytic expression for the harmonic series for periodic

functions of the time is as follows

:

s = f(f) = A + Ai sin at + A 2 sin 2wt + • • • + A n sin (nut) + • • •

+ Bi cos at + B2 cos 2wt + • • • + Bn cos (mat) + • • •,

(1-14)
where the A's and B's are constants, to be determined.

Every term in this series may not always be present, depending on the
nature of the function to be expanded. This will be made clear presently

by an illustrative example. The presence or absence of a term will be
known when one determines the constants A , A n , and Bn . Formulas for

this determination are obtained quite easily.

1-8 Determination of the Fourier coefficients. The constant term,

A
,
is obtained by multiplying both sides of Eq. (1-14) by dt and then inte-

grating over the time t = T, where T is the period (T = 2tt/co) of the first

term of lowest frequency. With this integration, all sine and cosine terms
will disappear, since the area under any integral number of sine or cosine

cycles is zero. Only the constant term will remain, and solving for Ao,
•r

x dt. (1-15)-H.
* There are a number of additional mathematical restrictions placed upon the

form of the function. The theorem fully applies to all functions encountered in

problems in acoustics.
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To evaluate A it is necessary, of course, to have the expression for z as a

function of time.

To obtain a typical coefficient, A n , for the sine series, both sides of

Eq. (1-14) are multiplied by sin (nut) dt and again integrated from t =

to t = T. On the right-hand side, all but one of the integrations will

involve products of the type sin (nut) sin (n'ut) dt, where n and n' are dif-

ferent integers. Since

. , JN . / # .n cos [(n - n')ut] - cos [(n + n')ut]
sin (nut) sin (n ut) = ~ '

and since the integration will always be over an integral number of cycles,

the result of all integrations on the right-hand side of Eq. (1-14) will be

zero, except in the case where n = n f
. For this latter case, the integration

becomes
T

sin2 (nut) dt = A n
—-

i sil

Therefore, integration of both sides of Eq. (1-14) yields

'T rp

x sin (nut) dt = A n
—-

I
Solving for A n , we obtain

UA n = — / x sin (nut) dt. (1-16)

In a similar way, by multiplying each term in (1-14) by cos (nut) dt and

integrating, term by term, from t = to t = T, one may obtain the expres-

sion for Bn , the coefficient of a typical cosine term in the series:

Bn = | f
x cos (nut) dt. (1-17)

Whether or not the integrations represented by Eqs. (1-15), (1-16),

and (1-17) are feasible will, of course, depend on the nature and complexity

of the function, x = f(t), to be expanded. In addition, while the harmonic

series can be shown always to be convergent, so that the coefficients A n

and Bn become progressively smaller as the frequency of the term rises,

this rate of convergence may be slow in the case of certain functions. In

these cases, it may be necessary to include a large number of harmonic

terms in order to achieve a reasonably good equivalence to the original

function. In problems in sound the convergence is frequently fairly rapid.

In addition, to the average ear, the over-all effect due to a complex sound

vibration is often only slightly modified if the very high harmonics are

removed or ignored.
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In a function which exactly represents the combination of a finite number
of pure sine or cosine variations, the series obtained by analysis of the sum
function will contain a finite, not an infinite, number of terms. Analysis,

for instance, of the vibration effect known as beats will yield only the two
frequencies present. Similarly, the complex sound constituting the sum
of three pure musical notes will analyze into those three frequencies alone.

Example. To illustrate the application of the formulas developed above for

the series coefficients, an analysis of the function represented graphically by the

so-called " saw-toothed " wave will suffice. This function, shown graphically in

Fig. 1-6, may be defined analytically as

fit) ->(H
for the time interval t = to t = T.

After this time the function repeats with

a fundamental period, T (1/T is then the

frequency of the first sine or cosine term)

.

Then

o=?X^^I (H) dt = 0. Fig. 1-6. Graph of saw-tooth wave.

It should be noted that Aq is here zero because of the complete symmetry of the

graph about the time axis. Wherever this symmetry is lacking, the constant term

will not be zero.

The coefficient of a typical sine term becomes, in this problem,

A"- tJ (2 t)

26
sin (ncot) dt =

nir

The amplitudes of the successive terms are then

26 26 2b

ir' 2ir nir

The cosine series is, in this problem, completely absent, since

26 f
T n_t}

T L \2 Tj
B„ cos (mot) dt = 0,

regardless of the value of n. The complete series equivalent to the saw-tooth wave

is therefore

x = f(t) = — ( sin ait + ^ sin 2co£ +••• + - sin (ncot) + • - - 1.

1-9 Even and odd functions. In general, the absence of all the sine

terms, or of all the cosine terms, depends on whether the original repeating

function is "even" or "odd." An even function is one such that f{t) =
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(a)

First term only

(b)

First three terms

(c)

First twenty terms

Fig. 1-7. The effect of including addi-

tional terms in the Fourier series.

f(—i). An odd function, on the other

hand, is one where f(i) = —/(— t).

If the saw-tooth graph of Fig. 1-6 is

repeated to the left of the origin,

where t is negative, it may be veri-

fied that in this problem the con-

ditions for an odd function are

satisfied. Therefore the equivalent

series contains only the sine terms.

For the function to be even there

must plainly be a mirror symmetry

around the ?/-axis. This symmetry

obtains, for instance, in the case of a

simple cosine curve, there being, in

this case, no sine terms. In the in-

terests of saving computing labor, it

will pay to first classify the given

function as either even or odd. There

are many functions, of course, which

are neither even nor odd, in which

case there will be both sine and co-

sine terms.

1-10 Convergence. It is clear in

the problem just discussed that the

harmonic terms become of smaller

and smaller amplitude as the fre-

quency rises. The complete infinite

series must be considered for a com-

plete equivalence. In Fig. 1-7 one

can see the approach to the saw-tooth

wave as more and more terms are

added. The precision desired de-

termines how far the computation is

carried out. In general, it is near

points of abrupt changes of slope that

the "fit" is poorest, when using a

finite number of terms.

The example above will suffice to

show the general method of com-

puting the Fourier coefficients. Other
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practice problems of a similar nature will be found at the end of the
chapter.

1-11 Application of the Fourier analysis to empirical functions. Be-
cause one starts the analysis already knowing the analytic expression for the

function, it may appear that problems of the above type are very artificial.

Experimentally, the motions of vibrating bodies and the vibrations of air

itself are usually picked up by electrical or electromagnetic means and are

studied by means of a recording galvanometer or an oscilloscope, and we
therefore have a graph to analyze, not an analytic function. From the

principles of the Fourier analysis just discussed, graphical methods may be
developed whereby, through the use of selected ordinates, the amplitude of

the various harmonic terms may be determined with any desired precision.

(This material may be found in many texts on electrical engineering.) In
recent years many so-called harmonic analyzers have been built which, by
mechanical or electronic means or a combination of both, perform the

desired analysis with great saving of labor and with the highest precision.

In Chapter 10 there is described an acoustical equivalent to the optical dif-

fraction grating that may be used to determine very quickly the approxi-

mate harmonic content in any complex sound.

1-12 Damped vibrations of a particle. So far no force other than an
elastic restraining force has been assumed to act upon the particle (or upon
the sound source treated as equivalent to a particle) . No such mechanical

system exists in nature (at least in the large scale or macroscopic world!),

since some sort of friction or dissipative force is always present. It will

be assumed that the dissipative force acting upon the particle is in the

nature of fluid friction and is of the form F = -rx. The constant r is

the force per unit velocity. The negative sign is necessary to show that

the force is always opposite in direction to the velocity. In general, fluid

friction is a function of the velocity raised to some power. The first power
is used here as a first approximation. If the velocity is not too great, this

approximation is reasonably good and, in addition, the use of the first

power greatly simplifies the differential equation.

For a particle moving under the action of an elastic force and also of a
viscous force of the above type, Newton's second law may be written

mx = —Kx — rx

or, after transposing all terms to the left,

mx + rx + Kx = 0. (1-18)

This linear differential equation arises many times in different branches of

physics. The student of electricity, for instance, will encounter an equa-
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tion of exactly this form when he studies the transient behavior of an

L-R-C circuit. This analogy will be discussed in more detail in Chapter 5.

The solution to Eq. (1-18) may be obtained in a number of ways. In

Chapter 5, when the use of complex quantities is introduced, a more gen-

eral method of solving this and related equations will be discussed. At

this point, a change of variable will yield results more quickly. Let

x = s/e-
6
', (1-19)

where b is an arbitrary constant. Differentiating Eq. (1-19) and sub-

stituting in Eq. (1-18), we obtain

In this new equation in y, the constants m, r, and K are fixed by the nature

of the system being considered, but the constant b which appears first in

the change of variable equation, Eq. (1-19), may be selected quite arbi-

trarily. If b is chosen equal to r/2m, the second differential term in Eq.

(1-20) will vanish and the whole equation will take the much simpler form

y+U- V)y = 0, (1-21)

where co£ has been substituted for K/m. The values of y which are solu-

tions to Eq. (1-21) can be obtained quite simply. Then, according to

Eq. (1-19), x, the actual particle displacement, may be obtained by simply

multiplying the value of y by e~bt
.

There are three important types of solutions to Eq. (1-21), whose form

depends on the values of the system parameters, m, r, and K.

1-13 Case I. oj
2 < b2 ( K ^ r2 \ Large frictional force. When

the system constants are such that c4 is less than b2
, the algebraic sign of

the coefficient of y in Eq. (1-21) is nega-

tive. The solution to the differential

equation can then readily be shown to be

y = Aie^X* + A 2e-
V^^^

}
(1-22)

Ai and A 2 being integration constants.

Therefore, using Eq. (1-19), we find that

x = Aie-<6
-v*C^ + A 2e- (-b+V*ZZV t

.

(1-23)

The values of the integration constants

Fig. 1-8. Graph of Eq. (1-23). A\ and A 2 may be determined if the
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of the problem are known. Sinceother time conditions

ol, both exponents are intrinsically negative, and the particle,

will always return to the position x = asymptotically

b >Vb2

once displaced

with time. The rate of this approach to zero will depend on the values of

cou and b. The graph in Fig. 1-8 shows the subsequent motion after t = 0,

in the case where both Ai and A 2 are positive. Two initial conditions, such

as displacement and velocity at the time t = 0, may be used to determine

the constants Ai and A 2 .

1-14 Case II. cu* > V Small frictional force. In
(
or i > &)

this case the coefficient of y in Eq. (1-21) changes sign, i.e., (co£ — b2
) is

positive, and the equation is readily recognized as in the form for SHM.
Clearly, then, the solution is

y = ym cos (w't + a),

and therefore

x = yme-
bt cos (a't + a). (1-24)

where

a > = Vco2 - V.

Equation (1-24) describes a damped harmonic motion, whose effective

amplitude, xm = yme~
bt

, dies out exponentially with the time. The initial

amplitude and phase angle are, re-

spectively, ym and a. The constant ym cos«

b(= r/2m) determines the time rate of

damping. The envelope of the curve

represented by Eq. (1-24) is, effec-

tively, the exponential curve x =

yme~
bt

, as shown in Fig. 1-9.

With no damping, i.e., when 6 = 0,

the frequency of the motion is cou/2tt.

Where damping exists, the natural

frequency is always lowered, since the

frequency is ca'/Zir and oj
f

is always

less than aiu . In fact, as the value of b

is increased (say, by keeping m con-

stant and increasing the frictional coef-

ficient, r), the oscillation frequency

approaches zero as b approaches «u .

Practical sound sources are usually

so lightly damped that the damping

factor, b, does not greatly affect the Fig. 1-9.
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frequency. This is especially true because of the quadratic relation between

a/, o)u , and b.

The length of time required for an oscillation to die out is of practical

importance in sound. The time for x to become zero is, of course, infinite

from the mathematical point of view, but in the case of sound waves an

amplitude below a certain minimum will be inaudible to the ear, and some

quantitative measure of the rate at which the amplitude diminishes is

desirable. A commonly used quantity for this measure is the modulus of

decay, 1/b, often called the time constant. This is the time for the ampli-

tude of the cosine function in Eq. (1-24) to drop to the fraction 1/e of its

initial value. Since b = r/2m, it will be seen that a large frictional coef-

ficient, r, and a small mass, m, will make the time constant small. A small

time constant implies a rapid rate of decay. It will be seen in Chapter 7

that the moduli of decay of the different harmonic frequencies generated

by musical instruments are of considerable importance in determining the

quality of the sound produced.

(K r
2 \

or — = j—-)• Critical damping. This is a

case of more importance in scientific instrument design than in the behavior

of sound sources. When ul = b2
, Eq. (1-21) becomes simply

y = 0. (1-25)

The solution to this equation is a straight line, of the form

y = A^ + A 2 ,

where A\ and A% are again constants of in-

tegration. The expression for x then be-

comes

x = e-ht{Aj + A 2). (1-26)

Plotted, this equation does not look greatly Fig. 1-10. Graph of Eq. (1-26).

different from the solution for the case

where b2
is greater than u'l (friction large). Figure 1-10 represents the plot

of Eq. (1-26) for the case where A\ is large and where both ^4i and A 2 are

positive (this is, of course, not necessarily so). If A± is numerically large,

x will increase at first, but eventually the exponential coefficient will bring

about a reversal of slope and x will approach zero as time progresses.

Rarely are actual sound sources so critically damped.
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Example. An example will show how the physical constants of the vibrating

system are used and also the technique for the evaluation of the constants of inte-

gration.

A particle of mass 3 gm is subject to an elastic force of 27 dyne-cm-1 and a
damping force of 6 dyne-cm^-sec. It is displaced a distance of +1.0 cm from its

equilibrium position and released. It is required to determine whether or not the
motion is oscillatory and, if so, to find its period; also the complete equation for x
as a function of time is to be obtained, with the numerical values of the amplitude
xm and the phase angle a.

From the data given, oju =VK/m = 3 sec
-1 and b = r/2m = 1.0 sec

-1
. Since

o)u > b, the solution is oscillatory, of the form:

x = yme-
ht cos (V«2 - b2

1 + a).

The period is 2ir/Vwl — b2 = 2.23 sec. To find the initial amplitude ym and the

phase angle a (the integration constants), the initial position and velocity may be
used. Differentiating x, we obtain

x =-yme~htWo>l - b2 sin (VS* - b2
1 + a) + b cos (Vco* - b2 t + a)].

Setting t = and inserting the values x = 1.0 and x = 0, two equations may be
obtained for the determination of a and ym , that is:

_b
tan a =

Vo>l - b2

and
1.0

ym = •

cos a

Solving for a and ym , we obtain

tan a =-0.353; a =-19° 30'; ym = 1.06 cm.

Therefore the complete expression for x is

x = 1.06c-1 -
* cos (2.82* - 19° 30').

1-16 Forced vibrations. All sound sources are set into vibration by
some external source of energy, capable of supplying some kind of periodic

force. Sometimes the mechanism of this energy transfer is quite compli-

cated, as, for instance, in the excitation of a violin string or in the sounding

of an organ pipe. A simpler example to consider is the setting into motion

of a pendulum by the application of an external force of a periodic nature.

In practice, the periodic driving force is rarely a simple harmonic varia-

tion of a single frequency. The cone of a radio loudspeaker which is repro-

ducing music, for instance, is being driven by a variable force equivalent

to a mixture of periodic forces of assorted frequencies. If, however, we
can discover how the particle will behave under the action of a driving force

of one particular frequency, we are ready, by means of the superposition

principle, to understand its motion when there are many frequencies.
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1-17 The differential equation. Let the instantaneous driving force

be represented by F = Fm cos cot, where, as before, co = 2wf. Writing

Newton's second law for a particle subject to an elastic and a damping

force, we obtain

mx + rx + Kx = Fm cos cot. (1-27)

The general solution to this equation is made up of two parts, mathe-

matically speaking. The first part is the complementary function, which

is the solution to Eq. (1-27), with the right-hand side set equal to zero.

Since this modified differential equation is exactly the one just discussed

under the heading of " damped vibrations of a particle," it is clear that

the complementary function may actually take one of three forms, depend-

ing on the factors m, r, and K.

The complete solution to Eq. (1-27) must contain, besides the comple-

mentary function, a second part, which constitutes a particular solution

to Eq. (1-27), with the right-hand side ^ 0. This particular solution must
satisfy the complete differential equation for all values of the time t. It

will be remembered that in the presence of damping all solutions to the

simpler differential equation (where the right-hand side of (1-27) is set

equal to zero) are of a form such that x approaches zero with the passage

of time. This part of the general solution to Eq. (1-27) (i.e., the comple-

mentary function) is therefore called the transient part. With physical

vibrations it can usually be neglected after a short time. The remaining

part of the solution, the particular or steady state solution referred to, will

then be the only significant part, for later times. It is this important

steady state solution that we shall now consider.

1-18 The steady state solution for forced vibrations. To obtain the

steady state part of the solution to Eq. (1-27), it is most convenient to

compare the differential equation with an exactly similar one arising in

electricity. If an emf, varying in a simple harmonic manner, is impressed

upon a series circuit with inductance L, resistance R, and capacitance C,

we may write the equation

Lq + Rq + jjq
= Em cos cot, (1-28)

where Em is the maximum value of the impressed emf and q is the charge on

the capacitor at any instant. Since for an electrical circuit the current i

is equal to dq/dt, we may write Eq. (1-28) in terms of the current:

~ I idt =Lj + Ri + -g I
>'" = '• cos -' (1-29)
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A comparison of Eq. (1-27) with (1-28) will show the mathematical form

to be identical. In addition, there is an equation for the mechanical system

in terms of the velocity x, which is the exact counterpart of Eq. (1-29) for

the current i, = q. This means that if the electrical equations have been

solved, the equations for the mechanical system have also been solved.

Writing down the solutions to the electrical equations, we have only to

replace the electrical parameters with those of the particle system and to

insert the variable x instead of the variable q to obtain the solutions to the

mechanical equations.

The steady state solution to Eq. (1-29), the electrical equation in terms

of the current, is the ordinary expression for the instantaneous value of the

alternating current in an L-R-C circuit, familiar to most students of ele-

mentary electricity. The expression for this current, i, is

W
i — —

, ;

= cos (cot — a), (1-30)

Vfi2 +

(

wL - M'
where

tan a = ^ (1-31)
K

In this equation the angle a represents the phase relationship between the

impressed potential and the current. Not so familiar is the expression for

the charge q. The equation for q may be easily obtained by integrating

Eq. (1-30) with respect to time. (Note that the constant of integration

must be zero, since there is no d.c. component to the impressed potential.)

q = E™
sin (ut

_ a). (1-32)

V*
2

+ (*L - =fe)'

It will be remembered that the expression in the denominator of Eq.

(1-30) is called the total electrical impedance of the circuit, while the

collection of terms, IcoL — —A is called the circuit reactance, commonly

represented by the symbol X.

We can now write the analogous equations for the mechanical system,

where the displacement x replaces charge, and the velocity x replaces

current

:

x = Fm — sin (cot - a) (1-33)

"V^ + ^-fJ
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and
± =

.

Fm
cos M - a). (1-34)

AT + \"m ~ «

)

So exact is the parallel between the mechanical and the electrical problem

that it is common to use for the mechanical system such expressions as

" mechanical impedance," " mechanical resistance," and " mechanical

reactance." (This use of the concept of impedance, as applied to a particle

or its equivalent, is not to be confused with the idea of "radiation imped-

ance," to be introduced in Chapter 5. This latter concept is used only in

connection with wave propagation and involves a quite different use of the

word impedance.) Note that in the comparison of the mechanical and

the electrical parameters, r is analogous to R, m to L, and l/K to C. 1/K

is called the "compliance" of the system, since it is the reciprocal of K, the

elastic "stiffness" constant. More will be said about the use of analogies

in Chapter 5.

1-19 Velocity and displacement resonance. In the electrical equation,

(1-30), so-called series resonance occurs when the current is in phase with

the applied potential or, from (1-31), when the reactance is zero, i.e.,

coL = 1/coC. Under these conditions, since the impedance is a minimum,

the value of the current, Im ,
will be a maximum, and so will the "root mean

square" current, Irm8 - For the mechanical system, this means that the

criterion for velocity resonance is that com = K/<a. If this condition is

brought about by the variation in the angular driving frequency co, other

parameters remaining constant, xm will then be a maximum. This corre-

sponds to the maximum current observed in the circuit.

Of more interest in the mechanical than in the electrical problem is

another kind of resonance, displacement resonance. Again considering co

as the variable, this resonance may be said to occur when the amplitude of

x, i.e., xm , in Eq. (1-33) is a maximum. Since co appears outside the radical

in the denominator, as well as inside, it is necessary to differentiate with

respect to co the coefficient of the sine expression on the right and set the

result equal to zero, in order to determine the exact criterion for resonance.

The necessary condition may be stated as follows:

co
2 = co

2 - 2b2
,

(1-35)

where co
2

, as earlier, = K/m and b = r/2m.

It should be noted that if the frictional coefficient, r, is small, so that 262

is much less than co
2

, then the condition for amplitude resonance is very

nearly that co
2 = co

2
. Since co

2 = K/m, this condition is seen to be identical

with that for velocity resonance. It is worth noting that with low damp-
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ing the frequency / at which amplitude resonance occurs is identical with

the natural frequency of vibration of the particle under the action of an

i Ik
elastic force only, i.e., / = co/2tt = =- <J— (With velocity resonance

this is always true, regardless of the degree of the damping.) When
the damping is large, however, so that the term 262 in Eq. (1-35) becomes

important, the frequency for amplitude resonance is lowered. Indeed, if

the damping is so large that 262
is greater than coj, there is then no true

resonance at all, since in Eq. (1-35) co is then imaginary.

In Fig. 1-11 are shown a number of curves for different degrees of

damping, each curve being a plot of the amplitude xm against the angular

frequency of the driving force, co. With low damping it is seen that

resonance virtually occurs when co = coM . When the damping is increased,

the position of the maximum shifts to the left. Curve 4 represents the

transition case such that with any increased damping, no true maximum
occurs.

1-20 The amplitude at resonance. It is clear from Fig. 1-11 that the

maximum value of xm at resonance is a function of the degree of damping.

The exact value of this maximum ordinate, (xm)res, is determined by insert-

ing the condition given by Eq. (1-35)

into the expression 2Fm

F
(t ) =

"ST + (
wm - f)

(1-36)

A simpler, approximate expression

for (xm)res may be readily obtained if

the damping is low (usually the case

in acoustics) . In this case the condi-

tion for amplitude resonance is prac-

tically that for velocity resonance, i.e.,

that the mechanical reactance X =
(com — K/u>) — 0. We then have

(Xm)res = = * (l-Ot)
car cour

For low damping, it is seen that the

amplitude at resonance is inversely

proportional to the frictional coef-

ficient, r, becoming very large as the

K

f

\ 1

\2 \
1 F \\
:-k v\\-as

CL s4\\\
e ^v^ N(/\s/V< \5^v^^.
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5.

b=.l8« tt
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(2b
2
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2
)

Fig. 1-11.
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damping factor approaches zero. As in the case of electrical resonance, it is

near resonance that the amplitude is affected most markedly by the value

of the dissipative element. Well off resonance, it is the mechanical react-

ance, (com -
—J,

that mainly determines the amplitude.

1-21 Phase relationships. In general, varied phase relations will ob-

tain between particle displacement and driving force, and between particle

velocity and driving force. In the latter case, the phase angle relationship

should be familiar from alternating current circuit theory; at velocity

resonance, x and F are in phase. At frequencies above resonance the effect

of the mechanical mass reactance, com, predominates; x lags F by a greater

and greater angle, approaching tt/2 for values of com large compared with

K/a) and r. Below resonance, the angle is a lead, since it is the term K/<a,

containing the compliance, that is important, and the angle approaches

tt/2 for large values of K/o. In the case of the displacement x the angles

are different, since the displacement is 90° out of phase with the velocity.

Figure 1-12 is a graph of the phase angle between the displacement x and

the driving force, - (a + tt/2), plotted against angular driving frequency for

various values of b. When co = cow ,
regardless of the value of b, the phase

angle is tt/2 and is a lag. At very low frequencies the angle approaches

zero; for very high frequencies the lag approaches t. For low damping,

where b is small, the phase angle shifts rather abruptly as the driving

frequency is varied from a little below the value com/2tt to a little above.

With greater damping the change is more gradual.

force
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Fig. 1-12.
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A simple demonstration of the above phase relationships can be set up

as in Fig. 1-13. A heavy and a light plumb bob, M and m respectively, are

suspended from a somewhat flexible common support, such as a horizon-

tally stretched string. The two pendulum lengths are adjusted to be

slightly different. If the heavy pendulum is set swinging, the lighter one

will soon begin to oscillate also, due to the coupling at the support. The
amplitude of this induced motion will

alternately build up and die down as

energy flows back and forth between

the two pendulums in this coupled sys-

tem (the heavier one, having the larger

mass and energy, will not be appre-

ciably affected). During the peaks of

the induced oscillations, the above

phase relations may be clearly seen.

The driven system here is one of very low damping. Therefore if the

heavier pendulum is longer and the driving frequency consequently lower

than that of the driven system, the phase angle will be almost zero. On
the other hand, if the heavier pendulum is shortened so that the driving

frequency is higher than that of the driven system, the two pendulums

will be almost 180° out of phase, being at opposite ends of their motions

at the same time. When the two pendulums are of the same length (a> = cou),

the 90° relationship can also be clearly seen.

Forced oscillations.

1-22 Energy transfer in forced oscillations. Unless the two pendulums

in the above experiment are of nearly the same length, very little energy

will be transferred. This is in line with common experience and can readily

be shown with equations. The instantaneous power delivered to the

particle system is Fx. This is the analog of electrical power, ei. In both

the electrical and the mechanical case it is the time average of this product

over a large number of cycles which constitutes the real power delivered.

In the electrical case the time average of the product ei(= Em cos cot

Im cos (at - a)) becomes ErmSIrms cos a = I?msR, where Erms and Irms are root

mean square values. The angle a is the angle between current and applied

potential, and R is the circuit resistance. Analogously, for the particle,

since F and x are periodic functions of the time, just as are e and i, real

average mechanical power may be written Frmsxrms cos a or (xrms)
2
r. The

expression (xrms )
2r shows that with a system having fixed damping char-

acteristics the power delivered will be a maximum whenever the velocity,

Xrms, is a maximum. xrms is itself a function of r and at resonance = Frms/r.

Therefore real power, S2res , at resonance may be written
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(Compare with the electrical equivalent, (E2
rms)/R.) The lower the damping,

obviously, the greater will be the delivered power.

Example. A particle has a mass of 2 gm. It is free to vibrate under the action

of an elastic force of 128 dyne-cm-1 and a damping force of 8 dyne-cm_1
-sec. A

periodically varying outside force of maximum value 256 dynes is applied to the

particle. It is required to find the frequency (fres)d for displacement resonance and

also the frequency (fres)v for velocity resonance, and the approximate amplitude at

displacement resonance.

In this case u>l = K/m = 64 sec~2 and ¥ = r2/4m2 = 4 sec
-2

. For displacement

- 262
. Therefore the required frequency is

(fresh = £ = ^ VcoJ^262 = 1.19 sec-*.

For velocity resonance, com = K/u, or

(^) - = ivl = 1 -27sec
"1

-

Since 262
is considerably less than to|, we may use the approximate expression for

the amplitude at displacement resonance:

(Xm)res =— = 4.0 Cm.
cor

1-23 Some applications of the theory of forced vibrations. From the

graphs of Fig. 1-11 several useful conclusions can be drawn. If we are

interested in transferring the maximum energy at a single frequency to a

system capable of vibration, it is obvious from the graphs and from the

previous discussion of energy that the damping factor of the system should

be as small as possible and that the driving frequency should be near the

natural frequency of the system. The crystal vibrators used in the pro-

duction of ultrasonic waves are good examples of low-damped systems.

In addition, the smaller the damping factor, the longer the persistence of

any sound energy set up after the driving force has ceased. The vibrations

of musical instruments persist for an appreciable time after energy ceases

to be supplied. There are two kinds of damping involved in the decay

of these vibrations. First, there are the internal frictions set up within

the sound source (string, bar, or plate, as the case may be). This type of

friction is undesirable from an energy point of view, as it results in the

degeneration of vibrational energy into thermal energy. The second kind

of damping is due to the presence of the surrounding air, and constitutes
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the only mechanism by which sound energy is radiated into space. For
high radiation efficiency this type of damping should be large compared
with the damping due to internal friction. In Chapter 5 this aspect of

vibration will be discussed more fully in connection with " radiation re-

sistance."

Ever since the advent of the phonograph and the radio set there has been

a need for a source of sound reproduction which is capable of vibration at

all audible frequencies, with no partiality to any one such frequency. For
many different reasons the ideal source has not been found; some of the

difficulties will be discussed later. A study of the curves of Fig. 1-11 will

suggest one possible solution to the problem. By designing the system

(treated as a particle) so as to have rather high damping, and by placing

the resonant frequency above audibility, we may obtain a virtually aperi-

odic response to a driving force over a wide, useful frequency range.

In Fig. 1-11, Curve 3 shows this approximately aperiodic property for

values of co < o>M . Unfortunately, in order for the system to have this type

of response, the damping must be quite large. If, in a radio loudspeaker,

the damping could be mainly that due to the air load, this would be all

to the good, for the sound radiating efficiency would then be high. Unless

the area of the vibrating source is impossibly large, as will be shown, the

damping due to the air is likely to be much smaller than is necessary to

approach critical damping. The required damping must then be obtained

by artificially increasing the internal losses, which will result in very low

over-all sound efficiency. Fortunately for efficiency, it is actually unde-

sirable for such a sound source to have strictly aperiodic properties. Sound
sources are usually poor radiators at low frequencies, for reasons not con-

nected with their own intrinsic vibration properties. By reducing the

damping well below the critical and placing the loudspeaker resonance near

the lower end of the audible spectrum, the increased amplitude near

resonance will make the output more uniform.

There is another interesting use that may be made of the phase angle

graphs of Fig. 1-12. In general, the motion of a particle undergoing forced

oscillations, with or without damping, will lag the driving force by some
small time which will depend, in a rather complicated way, upon the driv-

ing frequency. This means that when a series of frequencies of particular

relative phases are impressed upon the particle (constituting a complex

forced vibration), the resulting particle motion will not be a complete

replica of the variation in the driving force because of the assorted phase

lags. If, however, referring to Fig. 1-12, a damping factor is so chosen

as to make the phase angle approximately linear with driving frequency

(such as with b = ,75«), the original phase relationship will be maintained.
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This can be seen from Eqs. (1-33) and (1-34). If a oc w or a = Aw, then

the angle on the right-hand side may be written [<a(t -A)], showing what

amounts to a simple shift of the time axis, all frequencies being shifted to-

gether by the amount A. In actual practice, it is usually unnecessary to

worry about phase shifts in sound, since the ear, at least for stimuli of the

usual steady state type, is unaware of the phase relations in a complex

sound wave. This may not be true, however, in the case of short-duration

transients.

1-24 The importance of the transient response. A word may be said

here about the transient response of a system equivalent to a particle,

undergoing forced vibrations. The transient part of the solution to

Eq. (1-27), while of short duration, may have considerable effect on the

quality of a musical instrument and in some cases may distort or even

mask the desired steady state frequency. The difference in the quality

of a violin during the rapid playing of scales as compared with the sound

of long, sustained notes is quite apparent. It is only in the latter case that

the transient vibrations have had time to die out. The characteristic

sound of a drum is due entirely to a transient, the driving force being of

very short duration. Consider again the radio loudspeaker, whose purpose

it is to transform into sound all driving frequencies applied to it. When-

ever a new driving force is applied, there may be an important transient

response amounting to some 10 to 20 vibrations or more at the natural

frequency of the diaphragm, this frequency having nothing whatever to

do with the driving frequency. As a result, all sounds which are abruptly

cut off appear to have a "tail" or "hangover." Short duration sounds,

like those originating from the drum, appear to have about the same

monotonous frequency (i.e., that of the speaker resonance). These effects

are minimized by an increase in the damping factor, but for most present-

day radio reproducers this damping is not sufficient to overcome these

effects.

1-25 Superposition of SHM's mutually perpendicular. This interest-

ing case is important mainly because of the modern use of the oscilloscope

in the study and measurement of sound. In this instrument, vertical and

horizontal motions are imparted to an electron beam by means of vertical

and horizontal field forces. If these forces vary sinusoidally with the time,

the luminous spot on the screen will execute the motions to be described.

The curves traced are called Lissajous' figures. Lissajous himself obtained

these figures originally by observing the rectilinear vibrations of a particle

while sighting through a microscope, itself mounted upon the prong of a

tuning fork, free to oscillate at right angles to the particle motion.
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There is almost no limit to the variety of the curves that may be ob-

tained, depending on the amplitudes, frequencies, and relative phases of

the two motions. If the frequencies are the same, but the amplitudes and
phase angles are different, the equations for the vertical and horizontal

motions may be written:

x = xm cos (cat + an) (1-39)
and

y = ym cos (cot + a2). (1-40)

If the time is eliminated between these two equations, the following equa-
tion is obtained:

2zy

XmVm
cos (Oil OL2) sin' (ai - a2) = 0. (1-41)

This represents an ellipse whose eccentricity and inclination depend upon
the phase relations and the amplitudes. If the relative phase angle

(«i — a2) happens to be tt/2, the principal axes of the ellipse are vertical

and horizontal, since the term containing the product xy is absent. If,

in addition, xm = ym , the ellipse becomes a circle.

If the relative phase angle is zero, the equation degenerates into two
identical straight lines, given by

(1-42)

These curves can be made the

basis of an exceedingly sensitive test

for frequency measurement. If the

vertical motion is of unknown fre-

quency and if the frequency of the

horizontal motion can be controlled

with a calibrated variable frequency

electrical oscillator, it is only neces-

sary to adjust the oscillator until a

stationary ellipse, circle, or straight

line appears, and then read off the

unknown frequency.

If the frequencies of the vertical

and horizontal motions are not the

same, no steady pattern will appear

upon an oscilloscope unless the two

frequencies bear a whole number re-

lationship, as indicated earlier in con-

la)

Frequency ratio |:|

(b)

Frequency ratio

(c)

Frequency ratio |:3

Fig. 1-14. Lissajous figures.
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nection with beats. The steady patterns are all closed curves representing

higher degree equations. A few of the simpler ones are illustrated in

Fig. 1-14. Some of the patterns may be used, practically, to determine

the ratio of a known to an unknown frequency, provided that the whole

number ratio of the two frequencies does not involve integers which are

too large. In this latter case, the patterns are too crowded to interpret

easily.

PROBLEMS

1. Using a single pair of rectangular

axes, draw three graphs to represent, for

simple harmonic motion, the displacement

x, the velocity x, and the acceleration x,

each as a function of the time. Besides

showing the relative phases, indicate the

maximum values of the three variables in

terms of the proper constants.

2. (a) For simple harmonic motion,

find the displacement x as a function of

the time, by integrating the equation

mx = —Kx. (b) Show that the period

of the motion is given by T = 2irVm/K.

3. (a) Find the displacement z as a

function of the time, if the differential

equation for the motion is mx = -\-Ax,

where A is a constant. Assume that the

initial velocity is not zero, but has some

value v . (Why is this necessary?) (b) Is

the resulting motion periodic? Give a

physical description of the motion.

4. A perfectly elastic ball is bouncing

on a rigid floor. If the constant height to

which it rebounds is h, find the period of

the motion. Is the motion simple har-

monic?

5. Two collinear harmonic motions of

the same frequency have amplitudes of

2 cm and 3 cm respectively, and corre-

sponding phase angles of +10° and +30°.

Find by the "method of components"

used in mechanics (a) the amplitude, and

(b) the phase angle of the sum vibration.

6. Two collinear simple harmonic

motions are given by

X\ = (xm)i cos (2irft 4- ai)

and
X2 = (xm) 2 COS (2irft + a2).

By expanding the cosines of the sums of

angles and adding, show that the resultant

displacement x so obtained is equivalent

to that obtained by the purely vector

method.

© ©

Fig. 1-15.

7. Two collinear simple harmonic mo-
tions have frequencies of 1024 and 1021

cycles-sec
-1 respectively, (a) What is the

number of "mathematical" beats per sec-

ond? Of audible beats? (b) Answer the

same questions if the two frequencies are

1024 and 1022 cycles-sec-1
.

8. (a) Which of the graphs of Fig. 1-15

represent even functions and which repre-

sent odd functions? (b) In which cases

will a Fourier expansion involve a constant

term?

9. Find the first few terms of the

Fourier series equivalent to the square

wave specified by x = a, from t = to

t = 272, and x = -a, from t = T/2 to

t = T.

10. Show graphically how close to the

square wave is the sum of the first three

periodic terms in the solution to problem

10.

11. The current in a circuit with a half-

wave rectifier is given by i = Im sin (2-irft)

from t = to t = T/2, and i = from

t = T/2 to t = T. Find the first few

terms of the equivalent Fourier series.
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12. A triangular wave is represented by
the analytical expressions x = 2at/T from
t = to t = T/2, and x = 2a (1 - t/T)

from t = T/2 to t = T. Find the first

few terms of the Fourier expansion.

13. A telephone receiver diaphragm is

considered as a particle of mass 1.0 gm.
When displaced a distance 1.0 mm from
its equilibrium position, the elastic restor-

ing force is 10 6 dynes. The frictional force

opposing its motion is 4.0 X 10 3 dynes per

unit velocity (in cm-sec-1), (a) If the

diaphragm is displaced and then released,

will its subsequent motion be oscillatory or

not? (b) Find its natural frequency both

with and without the presence of the
damping force.

14. The diaphragm in problem 13 is

driven by a force F = 10 5 cos (2irft) dynes.

(a) Plot a curve of velocity amplitude vs
the driving frequency, from / = to

values of/ beyond the resonance frequency.

(b) Compute the frequency for displace-

ment resonance, and compare with the

frequency for velocity resonance.

15. It is desired to halve the free-

oscillation resonance frequency (with

damping) of the diaphragm of problem 13.

If this is to be done by changing the mass
alone, what will the new mass be?



CHAPTER 2

PLANE WAVES IN AIR

2-1 Introduction. The displacement of a single particle held in an

elastic suspension gives rise to a simple harmonic vibration around a fixed

point. On the other hand, the displacement of a portion of an extended

medium, having the properties of distributed mass and elasticity, always

results in waves, traveling out from the disturbed region. It is the mass or

inertial property of the medium which keeps the propagation speed from
becoming infinite, and in general the greater the specific mass (i.e., the

density), the lower this speed will be. Conversely, the "stiffer" the me-
dium, the greater will be the unbalanced force upon a portion of the medium
adjacent to the disturbed region and the greater the resulting acceleration.

A "stiff" medium will therefore make for a high propagation speed.

For the study of plane waves the general physical approach will be as

follows. We will assume a deformable medium, having both elastic and
inertial properties. A particular type of deformation will be assumed to

exist at a certain location in space, at a particular time. Then, in view of

the physical properties of the medium, we shall see that in the region being

considered the degree of deformation changes with time and, in addition,

new deformations appear in adjacent regions. This may be stated quite

simply in terms of the rates of change of the degree of deformation with

both position and time, i.e., in the form of a differential equation. It is

the solution to this differential equation that describes completely the wave
phenomena.

The student of electricity and magnetism should compare this procedure

with the method of demonstrating the necessity, under certain conditions,

for the existence of electromagnetic waves. In the case of electromagnetic

waves we start, not with the mechanical properties of a material medium,
but with Coulomb's law and the principle of electromagnetic induction.

Two " fields," the electric and the magnetic, are assumed to be locally dis-

torted, in the sense that they have local values differing from those existing

in the surrounding regions. Just as the mechanical deformations in air

then change with time and position, so one can also express the rates of

change of the two fields with time and space coordinates. It is not strange

that both the differential equation and the integral equation obtained in

this manner are similar in many respects to the equations for sound waves.

As a preliminary to a more formal description of wave phenomena,

let us clearly state the properties assumed for the medium. We describe

it as a continuous, isotropic medium, of uniform density and having the

property of perfect elasticity. As long as sound sources and receivers have
37
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dimensions large compared with the mean spacing between molecules, air

is, to all intents and purposes, continuous. (More will be said about the

molecular point of view of sound propagation in Chapter 6.) The as-

sumption that air is perfectly elastic deserves additional attention. Sound

attenuation actually does occur, due to the presence of dissipative factors.

As sound energy is projected through limited regions of the air, viscous

stresses in the nature of shear appear near the lateral boundaries of the

disturbance, and tend to dissipate the energy associated with the wave
motion. Away from the boundaries these effects are of negligible impor-

tance. A second possible means of wave energy dissipation is by the proc-

ess of heat flow between adjacent regions of compression and rarefaction.

Such a heat flow, because of its irreversible nature, would result in a con-

stant degradation of the wave-motion energy into the energy of uncoor-

dinated thermal motions. (This decrease in wave amplitude is not to be

confused with the operation of the ordinary inverse square law in the case

of spherical waves, where the same total wave energy simply spreads into

a larger and larger volume.) The heat conductivity of gases is low, and

therefore over the audible spectrum the deformation process can be de-

scribed quite accurately as adiabatic, and heat flow is not a significant

dissipative factor. More will be said on this matter in Chapter 6.

One other assumption will be made in the course of setting up the dif-

ferential equations for waves, namely, that the disturbance in the normal

mass distribution for the medium will always remain small. This is

true in any ordinary sound wave and this assumption will greatly simplify

the mathematics. Moreover, as a consequence of this assumption, there

will appear certain important physical features of wave propagation char-

acteristic of small amplitude waves only.

A few definitions will be of use in setting up the wave equations.

2-2 Dilatation and condensation. Let Vo be the volume occupied by
any fixed mass of air with no wave disturbance present. Similarly, p is the

density of the air under the same conditions. Then, if there is some small

deformation of the medium, so that Vo is increased by a small amount v,

and po is changed similarly by a small amount pd , we may state that

Dilatation = 5 = v/V ]

and (2-1)

Condensation = s = pd/po> J

These dimensionless ratios describe the instantaneous fractional change in

volume and density at a point in a field of sound. They are small, but not

truly differential quantities, and they vary in value both with position in

space and with time. In the manner of physics, dilatation and condensa-
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tion are sometimes treated as true differentials when their magnitudes are

small compared with other variables.

In view of Eqs. (2-1), we may write for the volume V of the chosen mass

of air and for the density p in the presence of the distortion in the air,

V = 7 (1 + 8)

and (2-2)

p = p (l + s).

Therefore

(1 + «)(1 +.«) = 1, (2-3)

since pV is constant, for constant mass.

If s and 8 are small,

s^-8, (2-4)

neglecting the product, s8, in comparison with s or 5. The values of s and

8 rarely exceed 10-3 for ordinary sound waves, so that the error in this

assumption is negligible. For the large amplitude waves which accom-

pany explosions, the simple relation of Eq. (2-4) can no longer be assumed

and the exact expression of Eq. (2-3) must be used. This greatly compli-

cates the mathematics, as will be seen in Chapter 6.

2-3 Bulk modulus. One other definition, from elasticity, will be useful.

For an elastic, isotropic medium, the bulk modulus is

ffl'--7fp, (2-5)

where P and V represent the pressure and volume respectively of a given

mass. With this definition the constant (B is always positive, since the

volume will decrease when the pressure increases and vice versa.

For a perfect gas there are two such moduli, the adiabatic modulus, (Ba ,

and the isothermal modulus, (Bt. The ratio (Ba/(B; = 7, where 7 is the

ratio of the specific heat of the gas at constant pressure to the specific heat

at constant volume (=1.4 for air). Since the variations involved in

sound propagation in air are closely adiabatic in nature, we will be con-

cerned only with (B
ffl

. Used without a subscript, (B will be assumed, there-

fore, to be (Ba .

The relationship between pressure and volume for a gas is not a linear

one, so that in general the value of (B does not remain constant, for a given

mass of gas, when the total pressure and volume are varied. However,

for sound propagated in the ordinary open air, any variations due to

changes in atmospheric conditions and also due to the presence of the

sound wave itself are quite small. Therefore there is little error in assum-

ing (B constant. (For normal open air conditions, (B is of the order of

1.4 X 106 dynes/cm2
, or 1.4 X 105 newtons/m2

.)
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While Eq. (2-5) is the precise definition of (B, we may substitute small

finite changes in pressure and volume for the differential changes without

introducing any serious error. Let p and v be such small variations in the

total pressure P and the volume V, due to the presence of the sound wave.

If Po and Vo are the normal undisturbed values for a given mass of gas,

we may write v
(B = —

/T ,

v/Vo
or

p = _(B5 = (Bs. (2-6)

This is a most useful relation between the small " excess pressure" p and

the condensation s. At any one position in space, both quantities will vary

periodically as the wave passes by, and since they are linearly related

through the bulk modulus, they will always be in phase.

2-4 Significant variables in the field of sound. The state of the air

through which sound waves are traveling may be discussed in terms of

any one of several physical variables. We have defined and related three

such variables, the dilatation 8, the condensation s, and the excess pres-

sure p. In setting up the wave equation in the next section, we shall in-

troduce a fourth important variable, the " particle displacement" £, to-

gether with its time and space derivatives. The three quantities already

discussed are related by quite simple equations and are also simply related

to £. It is therefore equally correct to describe the wave as a traveling

variation in the pressure, the condensation, the dilatation, or the particle

displacement.

In modern experimental acoustics, microphones of an electrical type are

used almost exclusively to detect sound waves. Such microphones respond

primarily to the pressure variable in the wave. In addition, the "particle

velocity" |, which represents the time derivative of the particle displace-

ment, presently to be introduced, will be a particularly convenient variable

when we come to the use of electrical analogs. In our later discussion we
shall make more use of " sound pressure" and " particle velocity" than of

any other of the variables so far introduced. These other quantities will,

however, be useful in setting up the wave equations and in addition they

are important to a complete understanding of the physical nature of a

longitudinal wave.

2-5 The differential equation for plane waves. The problem of the one-

dimensional wave, where the deformations in the medium are a function of

one cartesian space coordinate, is the simplest to analyze. Such a wave is

called plane because conditions are uniform over the cartesian plane speci-

fied by the one space coordinate. Most sound waves are not plane, but at
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a considerable distance from sound sources of ordinary size and of any

shape the curvature of the wave front is small, and the wave-front shape,

for all practical purposes, becomes plane. At nearer points, where this

cannot be assumed, we must make use of the more complicated three-

dimensional equations developed in the next chapter.

In the following sections we shall make free use of partial derivatives.

The integral equations in this chapter will often involve three or more

variables, the two independent ones being the space coordinate x and the

time t. The important physical parameters in the field of sound, p, £, £, s,

etc., will each be a function of both x and t. When we write d£/dx, we shall

be assuming that time, t, is held constant, whereas when d£/dt is used, it is

understood that x is held constant.

Let the air be deformed, at a given instant of time, along the ^-direction

only (Fig. 2-1). Assume a layer of air, originally of thickness dx and of

unit cross section, to be displaced along x in such a way that the face origi-

nally at x has moved a distance £, and the face at x + dx has moved a dis-

tance £ + d%. The increased thickness of the layer

of air, due to the deformation, is plainly d%. Since

d£can be written as —dx, we can then evaluate the
dx

dilatation, at this instant, for the layer of unit area

:

5 =
dx

dx
(2-7)

Fig. 2-1.Vq dx

Due to the deformation of the medium, the pressures on the two faces

of the layer will now be slightly different by a differential amount, dP.

Assuming a positive increment in pressure with increasing x, the net force

is to the left and therefore negative. This net force along the a>axis is

-Px+dx + PX = -dP = -d(Po + p) = -dp. (2-8)

Therefore, writing Newton's second law for the matter within the layer,

we have
d 2

£dp = po dx
dt2

(2-9)

where po is the normal undisturbed density of the air. (This equation

neglects the second order difference between the acceleration of the face

displaced by an amount £, and that of the face displaced by an amount

£ + d%.) The acceleration is expressed as a partial derivative in recogni-

tion of the fact that £ is a function of both x and t. Since the small change

dp
in the excess pressure dp is — dx, Eq. (2-9) may be written

ox
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I §2 - <S. (2-10)"
po ax " dp

(2 1U)

This form of the wave equation involves four variables. By making use

of Eq. (2-6), the number may be reduced to three. Differentiating (2-6)

partially with respect to x, time being assumed constant, we obtain

Therefore Eq. (2-10) may be written

(M- _ «a^
dt2 ~

po dx2

or, letting (B/po equal c2
,

pz = cA (2-12)
6t2 dx2 K J

This is the most common form for the differential equation for plane waves,

where £ is the dependent variable and x and t are the independent variables.

Equation (2-12) uniquely relates rates of change of £ with respect to posi-

tion and rates of change of £ with respect to time. Before we discuss the

solution of Eq. (2-12) and how it implies wave production, we should make

clear the meaning of the variable £ as applied to air.

2-6 Physical significance of the particle displacement, £. A gas like

air is not, of course, made up of molecules having any fixed mean position

in the medium, like the atoms of a solid. Even without the presence of a

wave, gas molecules are in constant motion, with average velocities far in

excess of any velocities associated with the wave motion (see Chapter 6)

.

However, from a statistical point of view, a fluid, either gas or liquid, may

be treated much as a solid because, when in the undisturbed state, mole-

cules leaving a certain region as a result of their random motions are re-

placed by an exactly equivalent number of molecules, having exactly the

same properties, thus keeping the macroscopic properties of the medium

the same. Similarly, during the vibration cycle associated with the wave

motion, the fact that a continuously changing group of molecules is involved

rather than a fixed set is of no moment, so long as the average properties

of the aggregate remain the same. In view of this equivalence, it is quite

proper to speak of "particle" displacements, velocities, and accelerations

for a fluid with much the same meaning as for a solid.

2-7 Solution of the wave equation. The most general solution of the

differential equation, (2-12), can be shown to be of the form

Z=f(x±ct), (2-13)
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where c = V(B/po. The exact nature of the function / is determined by

the boundary conditions peculiar to a specific problem, in particular by

the nature and behavior of the sound source. There is no mathematical

restriction that the function be periodic, although in practical sound

production this is usually the case.

If the reader has never encountered an equation of the type given by

(2-13), he will see nothing in it to indicate a wave. A closer scrutiny of

the term (x ± ct), however, will reveal its wave implications. Let us

assume the negative sign for the term ct. At some specific time h and at

some specific position xh £ will have some particular value fr. If a small

increment of time is added to the time th so that t becomes h + At, there

will then be a slightly greater value of x — x\ + Ax such that the total

value of (x — ct) will remain the same (i.e., such that (xi — cti) =
[(xi + Ax) - c(h + At)]) . Therefore

£ will still have the value &. Putting

it as simply as possible, after a

short time At, the same value of £

will recur at a point a little farther

along in the +x direction. This is

equivalent to describing a traveling

disturbance, where thewhole graph-

ical representation of Eq. (2-13)

moves along the x-axis from left to

right. Figure 2-2 will help to clarify this interpretation of Eq. (2-13).

A similar consideration will show that with a positive sign in front of

the term ct, the disturbance will move in the direction of —x. Whether

the motion is in the positive or the negative direction, for identical values

of the argument on the right of Eq. (2-13), and therefore for identical

values of £, Ax must equal c At. The velocity of travel is therefore Ax/At = c.

Since the quantity c, which is equal to VcB/po, is almost a constant, the

velocity is independent of the nature of the function /. It should also be

clear, from the above analysis, that for the small amplitude disturbances

here considered, no change in graphical " shape" will occur during the

propagation. If this were not true, the whole character of musical sound

and speech would vary with the distance between the source and the ob-

server!

Using the adiabatic bulk modulus and the density for dry air at normal

atmospheric pressure and 0° C, the velocity of sound c becomes very nearly

33,100 cm/sec, or 331 m/sec. This is in close agreement with experiment.

In Chapter 6 we shall consider some of the reasons for variations in this

figure.
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2-8 Disturbances of a periodic nature. The word disturbance is pur-

posely used here instead of "wave" because wave generally implies a re-

curring pattern or, mathematically, a repeating function, and there are no
such restrictions on the solution of Eq. (2-12). Much of the sound asso-

ciated with music is transient in nature, with no true steady state fre-

quencies. The transient component of the air disturbance travels with

the same speed as does the regularly periodic portion, and plays an impor-

tant part in determining the over-all effect on the hearer. For simplicity,

most of our attention will be directed to disturbances of a steady state na-

ture, originating from sustained vibrations at the source.

The following periodic expression for £ satisfies the differential equation

for plane waves

:

£ = £™COSy (X ± ct), (2-14)

since £ is a function of (x ± ct). The quantities £m and X are constants.

Equation (2-14) may also be written

£ = £m cos ± Y (ct ± x) \ = £m cosy (d ± x). (2-15)

The student may check directly that any function f(ct ± x) is a solution of

the differential equation, as well as f(x + ct). Written either way, the

use of the negative sign signifies a disturbance traveling in the -\-x direction.

We shall, for the most part, use the argument (ct ± x), since this form leads

to the interpretation of phase in the conventional manner.

In physical problems, the solution of a differential equation must not

only satisfy this equation but must also fit the boundary conditions. Sup-

pose that the source of the plane waves being considered is one side of a

rigid vibrating plate, the motion of every point of whose surface may be

described by the equation

Q = Qm cos 2irft, (2-16)

Q being the instantaneous displacement of the surface of the plate. Such
a source is often called an " acoustic piston." The air adjacent to the

vibrating surface of the source must have a motion identical with that of

the source itself. Let x in the wave equation (2-15) be measured from the

source position. Then, provided that the constant X = c/f, and if £m = Qm ,

it is seen that Eq. (2-15) becomes identical with (2-16) at x = 0. Thus
the form of Eq. (2-15) is correct to fit this particular boundary condition.

2-9 The wavelength. The relation X = c/f will suggest that this con-

stant is the wavelength, or the distance between adjacent crests in the

traveling disturbance. That this interpretation is correct will be evident

if Eq. (2-15) is rewritten as
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£ = im COS 2?r H i+
-t)-
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(2-17)

Assuming time to be held constant, Eq. (2-17) becomes a relation between

two variables only, £ and x, and represents a sort of " frozen" picture of

the various air layer displacements at a given instant. It is then seen that

there is a spatial repetition of a given value of £ every time x changes by an

amount X. This is the ordinary idea of wavelength. With x held con-

stant, Eq. (2-17) becomes a relation between the two variables £ and t.

It then describes, as a function of time, and while the wave passes by, the

vibration of a particular layer of air around its equilibrium position. The

frequency of this vibration will be c/X. In either case, the plot of £ vs x

or of £ vs t is a sinusoid, whose position along the x- or Z-axis, as the case

may be, is determined by the particular value of x or t that is chosen.

2-10 Graphical representation.

In the ordinary graphs of £ vs t, the

particle displacement £ is plotted

vertically, along the ^/-direction.

It must be emphasized that since

the wave is longitudinal, the actual

physical direction of the displace-

ment of a layer of air is parallel

to the z-axis. In this connection

it will be recalled that in setting up

the original differential equation,

a positive value of £ was measured

to the right of the equilibrium

position, i.e., in the direction of

-\-x. In Fig. 2-3 the graph is

placed below the physical picture

in order to clarify these relation-

ships. The dashed lines represent

the equilibrium positions for se-

lected layers of air.

2-11 Waves containing more

than one frequency component. If

the vibrating source is simultaneously executing a number of simple har-

monic motions of different frequencies, each of these motions will contribute

a separate component displacement of the air. The total value of £, by the

superposition principle, is the sum of these contributions. In general, then,

we may write, for a wave traveling in the -\-x direction,

Fig. 2-3. Graphical representation of

£ = f(x), time being held constant. Dashed
lines in part (a) represent central position

for each vibrating layer of air.
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£ = (£m)l C0S Y (C* - ») + ttl + (W2 COS Y (C* - ») + «2

+ • • • + (Wn cos r^ (ct -x) + On], (2-18)

where each of the A's is associated with one of the particular frequencies

present. Note that it is necessary to introduce a separate phase angle a
into each component of the wave expression, the values of these angles

being determined by the exact behavior of the source, where x = 0. The
reader should recognize that the right-hand side of Eq. (2-17) is some-
what similar, in terms of the wave equation, to the harmonic series of a

Fourier analysis, as discussed in Chapter 1.

As was brought out in Section 2-7, the speed of wave propagation, c,

for small amplitude waves, is dependent only on the elastic and inertial

properties of the medium. The various frequencies present in a complex
wave, as represented by Eq. (2-18), all travel with the same speed. This

means that the phenomenon of dispersion, so important in light, is almost

nonexistent in sound. This is to be expected, in view of the purely me-
chanical nature of longitudinal waves. At very high audible frequencies

and in the ultrasonic region, anomalous effects do occur (see Chapter 6),

but not for the ordinary audible range. There is one interesting special

case where dispersion does occur in air with ordinary sound frequencies and
intensities, i.e., in the propagation of waves along an exponential horn.

This will be mentioned again when this type of horn is discussed in

Chapter 5.

2-12 Alternate forms for the steady state solution to the wave equation.

By means of the relations given in Sections 2-2 and 2-3, it is possible to

rewrite Eq. (2-15) in terms of any of the various field parameters. The
results for a wave traveling in the -\-x direction are summarized below,

along with the original equation in terms of £.

(a) £ = £m cosy (ct - x),

(b) £ = — 2tt - £w sin -— (ct — x),

W-S-T 6-™?^-^' (2
"I9)

(d) s = -*r-T^ sin T (d - x)
'

(e) p = ®s = -<$,^ = -<R^

£

m sm^ (ct -x).
OX A A.
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(The coefficient on the right of Eq. (2-19b) could also have been written as

It should be pointed out that the determination of any one ol the group

of field properties in a plane wave in free space uniquely determines all the

others, since they are all simply related. This fact is important in connec-

tion with experimental acoustical measurements in the path of plane waves.

A " pressure" detector may be used to measure indirectly all other impor-

tant quantities as well.

2-13 Phase relationships. The phase relationships which appear in the

above set of equations are worth some attention. The particle velocity £,

the condensation s, and the excess pressure p are all in phase. This means

that the density and the pressure are a maximum when a layer of air is

moving through its central position (where \ is a maximum), not when it is

at the extreme ends of its motions, as one might expect. The dilatation is,

of course, 180° out of phase with the condensation and the excess pressure.

The quantities £, 5, s, and p are all 90° out of phase with the displacement.

The algebraic signs of these quantities introduce some subtleties in the

phase relationships. In the first place, the variables £ and £ in Eqs. (2-19)

represent vector quantities. As assumed in Section 2-5, +£ is in the +x

direction and -£ is in the -x direction. This applies also to the particle

velocity, £ The variables 5 and s may also be plus or minus, but since they

represent scalar quantities, the algebraic sign simply indicates whether the

volume or density change is an increase or a decrease. The excess pressure,

p, is also a scalar, in this sense. This difference in the interpretation of

sign for the vector and for the scalar equations in Eqs. (2-19) must be kept

clearly in mind in connection with reflection phenomena.

For a wave traveling in the -x direction, where (ct - x) is replaced by

(ct + x), there will be a positive sign on the right-hand side of Eqs. (2-19d)

and (2-19e), after the differentiation. No change of sign will take place,

however, in Eq. (2-19b). This means that there will now be a 180° phase

relationship between £ and either s or p. When the particle velocity is to

the right (positive), the density and total pressure will be less than the

normal po and Po respectively.

The vector interpretation of a positive or negative £ or | is unaffected by

the direction of wave propagation, since their sign is tied up with the sign

convention associated with a fixed rr-axis.

Example. A large flat plate is radiating plane sound waves from one side only.

The amplitude of its motion is 0.01 mm and the frequency of vibration is 1000 cycles-

sec-1
. For any point in the path of the waves, find the maximum values of £, |, s, 5,

and p.
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Assume the velocity of sound c to be 331 m/sec and the bulk modulus, (B, to be
1.4 X 106 dynes-cm-2

. The amplitude of motion in the air is the same as that of
the source. Therefore

£m = 10-3 cm,

km = 2wfU = 2tt(103)(10-3) = 6.28 cm-sec"1
,

Sm = 8m = ~ km = ^7 10-3 = 1.9 X 10- 4
,A 66. 1

p = ($>s = (1.4 X 106
)(1.9 X 10- 4

) = 2.66 X 102 dynes-cm"2
.

These values are typical of sounds of high intensity.

2-14 Energy in the wave. For the simple harmonic motion of a mass
particle, the energy was seen to be, on the average, half kinetic and half
potential. One would therefore suspect that in a sound wave the energy
is also so divided. While this turns out to be the case, there are certain
features of energy storage which are peculiar to longitudinal waves and
deserve some discussion.

2-15 Kinetic energy. Consider a longitudinal wave of sinusoidal form,
progressing in the +x direction. For a thin layer of air, of thickness dx
and of unit cross section, moving with a velocity £, the instantaneous kinetic

energy is

dEk = 2P0© 2 dx. (2-20)

The average kinetic energy density ek in the medium may be obtained by
integrating this expression with respect to x over an integral number of

wavelengths nX (keeping the time constant), and then dividing the result

by the volume this total energy occupies

:

2 Po(£m)
2

I sin2 -r- (ct — x)dx

^ = J °

nX
= \ Po(W

2 = \ Po(4^*)&. (2-21)

It will be noted that the result is identical with what one would expect for

the time average of the kinetic energy of a particle whose mass is the mass
per unit volume of the gas.

2-16 Potential energy. To obtain the corresponding potential energy
density, we must consider the properties of a perfect gas. In Section 2-3
it was indicated that the volume and pressure changes that occur in air

during the passage of longitudinal waves of audible frequencies are nearly
adiabatic in character. The graph of Fig. 2-4 represents a small portion
of a PV diagram for an adiabatic variation, using a fixed mass of gas. Let
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us suppose a volume Vo to be reduced to a

slightly smaller volume, V, the decrease being

called v. As a result, the pressure will rise

slightly from Po to P, the increase being

called p. The relations between these quan-

tities are shown in the graph. Assuming

the curve to be straight for small changes,

the work AW done upon the gas during the

volume change, or the energy AEP , stored

potentially within the gas, will be the area

under the curve between V and Vo :

Fig. 2-4.

AW = AEP = (Po + \v)v = Pov + ^pv. (2-22)

For simple harmonic variations around mean pressures and volumes,

the t>'s and p's are alternately plus and minus. The average value of the

first term on the right-hand side, Pov, over any integral number of cycles

is therefore zero. In the second term, however, when v changes sign, so

does p. The product sign is therefore always the same, showing potential

energy to be stored in the gas whether there is a compression or a rarefac-

tion. It is interesting to see that while the air is, of course, always "com-
pressed" in the absolute sense, total pressures never changing sign, the

medium nevertheless acts just like an unstressed spring which is alternately

compressed and stretched.

The second term on the right-hand side of Eq. (2-22), \pv, which alone

contributes to the average potential energy stored in the medium, may be

written in terms of the other field parameters by means of the following

transformations

.

Since

p = -m and v = Vod, (2-23)

therefore

\pv = ^(B52F . (2-24)

The minus sign of the first relation of Eq. (2-23) may be ignored, since a

positive sign for p and a negative sign for 8 both signify work done on the

gas and therefore an increase in the stored potential energy. For a thin

layer of air of unit cross section in the path of the wave, the potential

energy becomes

dEp = I (B 8
2 dx. (2-25)
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By partially differentiating the right-hand side of Eq. (2-13), first with

respect to x and then with respect to t, we see that

dx ~~ C dt

Inserting this value of d%/dx(= 8) into Eq. (2-25), we obtain

po(£)
2 dx.dE„ = h-a &dx

!

2 c2

(2-26)

(2-27)

This last expression is identical with Eq. (2-20), representing the instan-

taneous kinetic energy of a thin layer of air. It therefore follows that the

average potential energy density in a region containing an integral number

of wavelengths will also be J po(£m)
2

.

2-17 Total energy density in the wave. The total average energy

density in the wave will be the sum of the kinetic and the potential energies,

or

1
Ctotal = 4 Po(£m)

2 +
J

Po(£m)
2 = ^ Po(£m)

2
- (2-28)

e total

One of the interesting things about the energy in a wave disturbance, not

readily foreseen, is that the kinetic and the potential energies move along

together in identical regions . Since the in-

stantaneous energies can both be written

in terms of the instantaneous particle

velocity, they are each a maximum at

the same position in space and also at

other places and times are zero together.

This is, of course, not true for the vibra-

tion of a single isolated mass particle.

A plot of the total energy distribution in

space for the wave, Fig. 2-5, shows a sort

of pseudoquantum nature, regions of

large total energy alternating with regions of little or no energy. In the

case of traveling transverse waves on a stretched string, the above remarks

do not apply. For these waves, as will be seen in Chapter 7, the kinetic

energy maxima and the potential energy maxima are not coincident.

2-18 Sound intensity. This important measure of sound wave ampli-

tudes is defined as the energy flow across an area, per unit area and per unit

time. This energy will plainly be equal to that contained in a column of

unit cross section and of length c, the velocity of sound. Therefore the

Fig. 2-5. Graph of energy dis-

tribution along x at a given instant

of time.
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intensity I is the product of the total energy density, derived above, and

the velocity c.

There are several different ways of writing the expression for the sound

wave intensity, in view of the interrelations between all the important

parameters. Several useful forms, whose validity are given below.

(a) - P C(£J 2
. (d) Prmslrma-

(b) \*fiUr<U)*. (e) ^f- (2-29)

(C) PoC(|rms)
2

.

The form given in Eq. (2-29c) is algebraically similar to the expression for

electrical power, RP, where p c replaces R and £ takes the place of J. Ex-

tensive use of this analogy will be made in Chapter 5.

2-19 Units of intensity. Using cgs units, intensity is measured in

ergs-cm_2-sec
_1

. For ordinary audible waves, intensities range from

about 10
-9 to about 10+3 cgs units. In mks units this corresponds to a

range of from 10~12 to 1.0 joule-meter
_2
-sec

_1
. These numbers are an

indication of how small are the energies associated with sound. The total

energy coming from the throats of a crowd at a football game, in response

to some spectacular play on the field, might perhaps be enough to heat a

cup of coffee! Even the great crescendos of a large symphony orchestra

involve very little sound wave energy. All of this is a tribute to the sensi-

tivity of the human ear.

2-20 The decibel. For two sounds of intensities h and I2 , one is said to

be of a greater intensity than the other by a number of decibels (db) , where

Intensity difference in db = 10 logio 7- (2-30)

The decibel is therefore not an absolute, but a comparative measure of

intensity and is consequently a pure number. Without the factor 10, the

comparison is in bets, a unit too large for most practical purposes.

It is because of the sensitivity of the ear, and the range of intensities to

which it responds, that the decibel scale has been devised. The scale is

based on the well-known observation that the human sensory response

to a given increase in an objective stimulus is approximately proportional

to the ratio of the increase in stimulus to the stimulus already present. To

give a concrete example, the ear is capable of detecting a very small in-

crease in sound intensity when the background intensity is low; with a

great deal of background noise, a much larger increase of intensity is neces-

sary to give to the ear the same sensations.
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If h represents the sensation delivered to the brain, and g the objective

stimulus, the proportion may be expressed mathematically as

h oc ^. (2-31)

If this statement is essentially correct, as seems to be the case for sensations

of sight, pain, etc., as well as for hearing, then with greater changes in

stimuli Eq. (2-31) may be integrated between definite limits, to obtain

h -h2 = log
g-- (2-32)

It is upon this equation that the decibel scale is based.

The range of audible intensities mentioned above, 10+3 to 10~9 ergs-

cm~2-sec
_1

, may be converted into a decibel comparison by inserting the

ratio lOyiO-9 = 1012 for 7i/72 in E(l- (2-30). There is then seen to be an

approximate range of 120 db between very weak and very intense sounds

(ranging from the so-called threshold of hearing to the threshold of feeling)

.

Apart from the nature of the ear response, the numerical convenience of

this compressed scale is obvious. The decibel is also a convenient sized

unit to use because any intensity difference of the order of one decibel may
usually be ignored as far as the ear is concerned. The average ear is unable,

even under ideal laboratory conditions, to tell that two sounds differ in

intensity when their difference, measured in power per unit area, is less

than about 10%, and under ordinary listening conditions the difference

must be much greater.

There is an important consequence of the ear's rather crude ability to

differentiate among varying sound intensities. It was pointed out earlier

that it is difficult to express the physics of actual sound problems in terms of

precise mathematics, and often even more difficult to solve these approxi-

mate equations. Fortunately, a discrepancy of 10-15% between theory

and experiment, as far as intensity is concerned, is of no significance to the

ear. This is a great comfort to the designer of practical acoustical equip-

ment.

2-21 Intensity "level"; pressure "level." In recent years there has

been devised an absolute intensity scale, known as the intensity level. This

scale is based on the arbitrary selection of a low reference intensity, 7o, with

which other intensities are compared. The value generally used for 7 for

plane waves is 10-16 watt-cm-2 = 10-9 erg-cm-2-sec-1 , an intensity which

corresponds approximately to the average threshold of hearing, or the weak-

est sound which can be heard. With 7 specified, the intensity level in

decibels of some sound of intensity 7 is then computed by replacing the
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ratio h/h in Eq. (2-30) by I/I . Using the reference intensity given

above, the intensity level in a noisy machine shop might be 100 db.

Since virtually all modern sound detectors respond directly to the varia-

tions of pressure in the wave disturbance, rather than to the intensity itself,

the so-called pressure level is considered more fundamental than the in-

tensity level. By Eq. (2-29e) the intensity in a plane wave is seen to be

proportional to p
2

. Therefore we may write Eq. (2-30) in the form

Intensity difference in db = 10 logio \ = 20 log™ — • (2-33)

The rms value of p , the standard reference pressure, is commonly taken

to be 0.0002 dyne-cm-2 . (This corresponds closely to the pressure in a

wave whose intensity is the reference one given above, 10-16 watt-cm-2 .)

The pressure level in a plane wave is therefore, by Eq. (2-33), 20 times the

logarithm to the base 10 of the ratio of the pressure in the wave to the refer-

ence pressure, pQ .

Neither intensity level nor pressure level is the same as loudness level,

which is a measure of subjective response that will be defined in Chapter 9.

PROBLEMS

1. Consider a plane wave traveling

in the -\-x direction. Using the same pair

of rectangular axes, plot as a function of

the time, for a fixed value of x, the particle

displacement £, the particle velocity £, the

dilatation 8, and the excess pressure p.

Besides showing the relative phases, indi-

cate also the maximum values of each

variable in terms of c, X, etc.

2. Repeat problem 1 for a wave mov-
ing in the —x direction.

3. Two plane waves are traveling along

the x-axis. The particle displacements

due to the separate waves are given by

and

£i = £m cos— (ct

A

2k

x)

= — £m cos— (ct + x).
A

For the two waves, at the position x = 0,

find the relative phase of (a) £i compared
with £2,

(b) £1 compared with £2, and (c) p\

compared with p2 .

4. For a certain plane wave traveling

through air, the maximum value of the

excess or acoustic pressure is 0.1 dyne-cm-2.

If the frequency is 1000 cycles-sec-1, and

the density of air is 1.29 X 10-3 gm-cm-3
,

find (a) the maximum particle displace-

ment, (b) the maximum particle velocity,

(c) the maximum condensation, and (d) the

maximum dilatation.

5. For the wave in problem 4, find

(a) the average kinetic energy per unit

volume, (b) the average potential energy

per unit volume, and (c) the wave inten-

sity, all in cgs units, (d) Also determine

these values expressed in mks units.

6. A plane wave in air has an intensity

of 40 erg-cm-2-sec-1 and a frequency, /. A
second wave, also in air, has an intensity

of 10 erg-cm-2-sec-1 , and a frequency f/2.

For the two waves, find the ratio of (a) the

maximum particle displacements, (b) the

maximum particle velocities, and (c) the

maximum acoustic pressures.

7. A plane wave in air and a plane

wave in hydrogen have the same intensity

and are of the same frequency. Find for

the two waves the relative values of

(a) the maximum particle displacements,

(b) the maximum particle velocities, and
(c) the maximum acoustic pressures. The
density of hydrogen is 9 X 10-8 gm-cm-3

and the value of c is 1270 m-sec-1 .
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8. The intensity level in a longitudinal

wave in air is 20 db. Assuming a reference

intensity of 10~9 erg-cm_2-sec-1 , find the

absolute intensity in the wave in cgs units.

Assuming the rms reference pressure to be

2 X 10
-4 dyne-cm-2 , find the rms acoustic

pressure for the pressure level of 20 db.

9. Sound wave B has an intensity

10 db greater than wave A. Wave C has

an intensity 10 db greater than wave B.

(a) What is the intensity of wave C rela-

tive to wave A, in db? (b) Find the

absolute ratio of the intensity of B to

A, C to B, and C to A.

10. The pressure level in a sound wave
in air is 30 db. (a) Find the absolute

value of the acoustic pressure in the wave,

in cgs units, (b) Also find the maximum
value of the particle velocity. (Use the

standard reference pressure given in

problem 8.)



CHAPTER 3

WAVES IN THREE DIMENSIONS

Many problems in acoustics can be handled adequately by the methods

discussed in Chapter 2. Whenever the vibrating surface is plane and rigid,

or approximately so, the waves leaving the source are plane. The wave-

front shape will be maintained as plane, provided that the surface area of

the source has dimensions large compared with the wavelength in air (see

Chapter 4) . The waves leaving the mouth of an " ideal" horn, for instance,

are approximately plane and remain so provided the perimeter of the

mouth of the horn is large compared with the wavelength. All properties

in the resulting field of sound may then be computed to within a fair degree

of accuracy through the use of the plane wave equations just developed.

There are, however, so many important practical problems where the

above state of affairs does not exist that a more general consideration of

wave phenomena is desirable. Let us therefore consider the general prob-

lem of space waves.

3-1 Waves in three dimensions. The equation of continuity. Con-

sider the medium to have the same isotropic properties assumed in setting

up the differential equation for plane waves. In this case, however, we
will consider a more general type of deformation. In Fig. 3-1 a differential

volume element in cartesian coordinates, dx dy dz, is located at the position

specified by x, y, z. Matter is pictured as in a general state of flux

throughout the region, with velocity components at the point in question

specified by u, v, and w, along the x~, y- and z-axes respectively. Positive

vectors are assumed and u, v, and w
are presumed to change with varia-

tions in x, y, and z. Positive incre-

ments in velocity accompany positive

increments in position coordinates.

It is now possible to set up an

equation which states, very simply,

that the total time rate of mass flow

out of the volume, dV, through all six

faces of the cube, is equal to the rate

of decrease of mass within this volume.

This is called the equation of conti-

nuity, and it is set up as follows.

Consider the face of area dy dz, lying

in the yz plane, on the left-hand side

of the cube. The mass of fluid enter-

55

x ,y,z

Fig. 3-1.
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ing this face per unit time is pu dy dz, where p is the fluid density at this

face. (Note that without the factor dx dy, this expression represents the

flow per unit area.) At the parallel face, located at x + dx, both u and
p are assumed to be different, and greater, by a differential amount. We
may therefore express the net rate of efflux of mass through the two
parallel faces as

-pu dy dz + [pu + ^1 dxj dy dz = ^M dx dy &> (3
_
1}

In a similar manner, the time rate of outward flow of mass through the

other two sets of parallel faces may be shown to be -^~- dy dx dz and

—^— dz dx dy respectively. The sum of the three rates of flow represents

the total rate at which matter is leaving the volume element, which in turn

may be written as - -^ dx dy dz. Equating the two expressions for the

efflux, we obtain
d (pu)

,

d(pfl) d(pw) _ dp

dx ^ dy ^ dz dt' ^ Z)

This is the equation of continuity and is nothing more than a statement of

the conservation of mass.

3-2 Application of Newton's second law. As in the case of the deriva-

tion for plane waves, we shall now make use of Newton's second law of

mechanics. Along the ^-direction there is an unbalanced force upon the

matter within the differential cube. By an analysis similar to that just

employed, it is easy to show that this unbalanced force, dF, is given by

df)
dF = -dpdydz = - -^ dx dy dz. (3-3)

Here, as in the plane wave analysis, we may use the "excess" pressure, p,
instead of the total pressure, P, since dp = dP. The negative sign appears
because, with P increasing with positive increments along x, the net force

is in the -x direction. Expressing Newton's law in the general form
involving momentum, we now have

— —dx dy dz = dx dy dz

or

_ dp dm. n ,,

dx~ dt
(3_4)

There are three symmetrical equations for the motions along y and along z.
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Collecting the results for all three axes, we have

dp _ d(pu)
(a)

dx dt

w-S-'T- ^
(c)

dp _ d(pw)

~dz
~

dt

3-3 The differential equation for waves in three dimensions. Having

properly expressed the physics of the situation, we may now operate upon

Eqs. (3-2) and (3-5) in a purely mathematical manner. In outline (the

reader should check the actual steps), this is what is done. First, Eq.

(3-2) is differentiated partially with respect to time, holding x, y, and z

constant. Then the first of equations (3-5) is differentiated partially with

respect to x, the second with respect to y, and the third with respect to z.

This process results in right-hand terms of the form }? , etc. By adding

the three new equations so obtained and combining the result with the

equation which is the result of differentiating Eq. (3-2), we obtain the

relation

d^p_&p.&p&p , .

dt2 dx2
**"

dy2 ^ dz2 K J

It will be noted that the dependent variable on tne left is p, while on the

right it is p. The quantities p and p are related, however, through the

equations

p = (Bs 1

and (3-7)

p = p (l + s)
J

As a result of Eqs. (3-7), it can be shown that

&p _ l^&p
dt2 ~ & dt2

'

When this expression for d2p/dt2
is introduced into Eq. (3-6), the latter

becomes
cPp

dt2 =KB +S +3H^ <m>

where V2
is an operator symbol, representing the process within the paren-

theses.

Equation (3-8) is the general differential equation for space waves, ex-

pressed in terms of cartesian coordinates. It should be admitted freely at
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this point that precise, useful solutions of this general equation are very
difficult to obtain. One of the great difficulties in all solutions of differ-

ential equations, and especially in the field of acoustics, is to introduce cor-
rectly the physical boundary conditions. The complex contour of almost
any practical musical instrument makes impossible any accurate mathe-
matical statement as to source behavior. No one, for instance, would
attempt to write the equation for the surface of such a source as the body
of a violin

!

3-4 The differential equation for spherical waves. A special, simpler
form of Eq. (3-8), which has greater practical usefulness, may be obtained,
but there are definite restrictions upon its validity. This simpler equation
expresses the situation when there is complete spherical symmetry and it

is called the equation for "spherical waves." To obtain the spherical wave
equation from Eq. (3-8) is a laborious process. Equation (3-8) may be
transformed by standard mathematical procedures to spherical coordinates,
where the variables are the radius vector r, the polar angle 6, and the azi-

muthal angle <$>:

^p = Jd^p 2 dp _1 d*p 1 ra /. dp\l\
dt*

C
\dt* + rdr^r* sin2

d<j>*
+

r^rTd \Je [
Sm

° Td)\ j
'

(3
~
9)

Since for spherical symmetry all derivatives with respect to d and <£ are
zero, only derivatives with respect to r are retained. It is not difficult

to show that Eq. (3-9) then reduces to

d 2M _ 2
d\rp)= c

dt2 dr
(3-10)

(It should be pointed out that this roundabout mathematical path may be
greatly shortened by initially setting up the equation of continuity in
spherical rather than in cartesian coordinates.)

It is Eq. (3-10) that forms the basis for our discussion of space waves.
Important restrictions on its use will be pointed out as we go along.

3-5 The solution of the differential equation. Except for the different

argument in the numerator, it will be noted that Eq. (3-10) is identical in
form with the differential equation for plane waves. Therefore we may
write down immediately its general solution:

rp =
f(r + ct)

or

P = -fir ± ct). (3_11)
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Only the minus sign is physically significant for practical purposes; we are

concerned only with the diverging type of wave which travels in the +r
direction.

Both the differential equation and its solution may be written in terms

of the density and the condensation, using exactly the form of Eq. (3-10).

This should be apparent without formal proof, since these quantities are

all linearly related to pressure. The differential equation when written in

terms of the particle displacement £r and the particle velocity £r takes a

somewhat different form. We shall not discuss these equations, since £r

and |r are both derivable from the velocity potential 3>, discussed below.

The most obvious difference between the integral equation, (3-11),

and the solution of the plane wave equation is the presence of the important

coefficient 1/r. This is to be expected in view of the physical nature of

spherical waves, where the wave energy is spreading into a larger and larger

volume. If the reader is puzzled because the coefficient involves the

inverse first power of r, he should remember that sound intensities are, in

general, proportional to the pressure squared, therefore the pressure should

fall off as 1/r.

Before applying the results just obtained to a practical problem in

acoustics, one more basic quantity in the field of sound will be defined,

because of its general usefulness. This is the velocity potential, <£, first used

by Lagrange. It is interesting to compare this function with the well-

known electric and magnetic potentials of other branches of physics;

the beautiful symmetry of the mathematics will become apparent in the

next section. From a purely manipulative point of view it is possible to

dispense with the function <£ in many practical problems. The other field

parameters are all related to this function and it is therefore possible to

select some other parameter (the acoustic excess pressure p is often chosen)

and refer all other variables to this other parameter. This is exactly what

is done in some of the current writing on acoustics, and in many cases this

is a time-saving approach. One should, however, become familiar with

the use of the velocity potential, partly because of the unifying part it

plays in correlating the various sound field parameters and partly because

of its importance in the general subject of hydrodynamics, a complex sub-

ject closely related to acoustics. Whenever viscosity enters into a prob-

lem in fluid motion, and most problems in hydrodynamics are of this type,

the velocity potential is found to be an indispensable tool.

3-6 The velocity potential, <E>. Both the differential equations for space

waves and their solutions may be written in terms of the new function $, de-

fined as follows: 5$ d<£ 3$
u = - — > v = - —

,

w = - — > (3-12)
dx by dz
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where u, v, and w are the fluid velocity components. The student of elec-

tricity will recognize the similarity between the velocity potential $ and
the electrical potential </>. Just as the space derivatives of 4> represent the

electric field components along mutually orthogonal directions, the ap-

propriate derivatives of $ represent velocity components. In both cases

the derivatives represent the magnitudes of vector quantities, whereas $ and
4> are scalars. The usefulness of $ is exactly that of the electrical potential

function. It is often easier to evaluate $ in the field of sound than to

evaluate the vector quantity, i.e., the particle velocity. Once the equa-

tion for $ as a function of (x, y, z) is formulated, however, u, v, and w (or

the quantity £, in the case of plane waves) may be readily obtained. The
exact way in which the velocity potential is so used will appear presently

when a specific problem is considered.

When the function <£ is introduced into the fundamental dynamical

equations for a deformable elastic medium, equations of exactly the same
differential and integral form as those just developed are obtained:

d23>—— = c2 V2$ (cartesian coordinates),

d2(r$) d 2(r$)

.a/2
= °2

a 2
(spherical coordinates), (3-13)

$ = -f(r ± ct) (spherical coordinates).

To the reader who has carefully followed the physical and mathematical

arguments of this chapter, these equations will appear quite credible.

Those more skeptically inclined will find the details in Appendix I.

Since for the spherical waves now under consideration the particle

velocity, as a matter of definition, is always along the direction of the radius

vector r, the cartesian equations (3-12) reduce to the single equation

*~£ (3-14)

Once the equation for the particle velocity is known, the expression for £

may be obtained by integrating Eq. (3-14) with respect to time.

The relations between the condensation s, the dilatation 5, and the excess

pressure p, used in connection with plane waves, may be carried over

bodily into the discussion of spherical waves, since these relations were in

no way restricted to the geometry of plane waves. (The relation between 8

and £ is more complicated than in the case of plane waves, since there is a

transverse dimensional change as well as a radial one.) By a straight-

forward mathematical transformation, however (see Appendix II), a most

useful relation between p and <£ may be obtained, good for any system of
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space coordinates, including the case of spherical symmetry here being

considered

:

f = -P = Os. (3-15)

3-7 Application of the function $. The "pulsing sphere." Wc shall

now apply some of the above relations to the problem of radiation by a

" pulsing sphere." The nearest practical realization of this curious but

mathematically convenient type of source would be a spherical balloon.

Imagine such a balloon to be connected to a reservoir whose pressure suffers

a small, regularly periodic variation. The balloon would then expand and

contract with simple harmonic radial motion. (Such a model would, of

course, only follow the pressure variations at very low frequencies.)

Let us now consider a problem where enough information is furnished so

that the complete and exact equation for the function $ may be written

down. We shall first assume a periodic form for <£, since the derived

quantities £, p, etc., are known to be periodic in actual sound waves:

$ = | cos |"y ict - r) + cX (3-16)

[Note that we are using here the alternate expression (ct - r) instead of

(r - ct).] The constants B and a are essentially constants of integration,

to be determined from the known behavior of the sound source, the pulsing

sphere. The amplitude and phase of the somewhat abstract function <£ at

the surface of the source, however, are not directly measurable, so we must

express our equation in terms of the measurable quantities such as £ or £.

£ = _ — =-- -sm|y (c* -r) +
«J
+ - cos |y (c* -r) +

«J.
(3-17)

Example. Let us suppose that the pulsing sphere has a radius of 10 cm and that

the maximum radial velocity of its surface is 10
-1 cm-sec

-1 while "pulsing" at the

rate of 500 cycles-sec" 1
. (The wavelength in air will then be 66.2 cm.) The two

periodic terms on the right-hand side of Eq. (3-17) are just 90° apart in phase and

are therefore equivalent to a single periodic term whose amplitude is

& >fWTW-W(fMf
(This follows from the discussion in Chapter 1.) The constant B may be found

from this equation for the velocity amplitude, evaluated at the surface of the

sphere:

& = 10"1 = B
r=10

:.B = 7.25cm3-sec"

V[_(10)(66.2)J
+

|_(10)
2J
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The phase angle a may also be found, if information regarding the initial time con-
ditions is available. Since we are interested primarily in the intensity distribution,
in this problem we shall ignore the matter of phase.

We are now in a position to compute the value of the important "field" param-
eters for any point outside the sphere. At the point r = 100 cm, for instance, we
have

£» =7.25
|r=100 \L(100)(66.2)J

+
L(100)

2
J(100) (66.2).

6.87 X 10-3 cm-sec-1

,

& k=ioo

r =100 27rf

If p = 1.29 X 10-3 gm-cm-3
,

6.87 X 10-3

(2tt)(500)
2.18 X 10"6 cm.

n= Po "

= 1.29 X 10-

J?-=ioo

,3
(7.25) (2tt) (500)

100

= 0.291 dyne-cm-2
.

<-«-5®
Ir=ioo c2 \dtJm
\
r=100

_ 1 fB(2*f)l

c2 L r Jr= i00

= 1 r (7.25)(27r) (500)1

(3.31 X 104
)
2
L 100 J

= 2.08 X lO"7
.

3-8 Intensity for spherical waves. A special comment must be made
regarding intensity in the case of spherical waves. If a point is located at

a considerable distance from the spherical source, the second term in

Eq. (3-17) is small compared with the first, since its coefficient falls off as

1/r2
,
whereas the first term diminishes as 1/r. Therefore the phase rela-

tionship between £ and 3> is nearly 90°. From Eq. (3-15) there is also the
same relationship between s and <£, so that p ( = 63s) is then in phase with £.

Since this was precisely the situation in the case of plane waves, the plane

wave expressions for intensity may also be used for spherical waves, but
only for distant points. Nearer the source, the second term in Eq. (3-17)

can not be neglected and no such 90° relationship between £ and $ exists.

Therefore p and £ are no longer in phase with each other.

This completely alters the intensity picture. In fact, much of the

instantaneous power delivered by the source to its immediate surroundings
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returns to the source and is not radiated as real wave energy at all. Only
at more distant points is the energy flow all radially outward at all instants

of time. In the next section we shall refer to this rather peculiar state of

affairs again, in connection with the computation of the total radiated

power of any small source. The additional techniques introduced in

Chapter 5 on acoustic radiation impedance will also be helpful in under-

standing the above phase relationships and in showing how to compute the

intensity for near points.

The reader by now is beginning to wonder why a discussion of the field

of sound around a " pulsing sphere" is of any practical importance, since

actual sound sources— musical instruments, loudspeakers, etc. — have no
such simple geometry. The answer to this question will be given in the

next section, where will be explained a simple method whereby the prin-

ciples just discussed may be applied to the radiation of sound by many or-

dinary sources.

3-9 The "strength" of a source. This concept is primarily reserved for

those sources whose physical dimensions are small compared with the wave-
length. We shall first apply the idea to a small pulsing sphere whose
radius r <$C X. The expression for the particle velocity, Eq. (3-17),

evaluated at the surface of this sphere then reduces to the second term only:

k = | cos [y (ct - r) + tt

J.
(3-18)

We can now define the " strength" of any small source on the surface of

which, at any instant of time, all points are moving with the same velocity,

as the product of the surface area times the instantaneous velocity of the surface.

The maximum value of this strength we shall call B' = (surface area of the

source) (£m). In the case of the small pulsing sphere under discussion, B'

becomes

B' = Mro) 2 -
2
= 4tt£. (3-19)

Equation (3-16) may then be rewritten in terms of the maximum strength

of the source, B r

:

* = £ cos [f (c'~ r) + a
}

(3-20)

Note again that this expression is correct only when the spherical source is

such that r is small compared with X.

For our idealized pulsing sphere, the replacement of 5 by 5' has no
particular advantage. It is for the small irregular source, of nonspherical

contour, that the concept of the strength of the source is intended. In

Chapter 4 we shall discuss in some detail the matter of wave diffraction,
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of so much importance in the radiation and reception of sound. At this

point we shall simply make use of general ideas, usually presented in even

an elementary discussion of light— ideas which are equally applicable to

sound propagation. It will be recalled that a parabolic light reflector,

whose dimensions are certainly very large compared with the wavelength

of light, and having a small source at

its focal point, emits a beam of light

whose wave front is plane and whose

cross section remains quite constant

(except for the scattering due to dust

particles, etc.). However, when we
reduce the initial cross section of the

beam (for instance, by placing in its

path an opaque plate with a very

small hole), we find light diverging

from the hole in directions far re-

moved from the normal. In fact,

when the dimensions of the hole

approach the wavelength of light and

become even smaller, there is an

almost hemispherical distribution of

energy on the far side of the obstruct-

ing plate. In sound, the analogy to

the hole in the plate is completely realized by a rigid acoustic piston set

into a rigid wall whose plane coincides with that of the piston face. (The

piston is assumed to radiate from the front face only.) The energy leaving the

piston face will either have "beam" properties or will have a hemispherical

distribution, depending on the ratio of piston diameter to wavelength (see

Chapter 4) . Moreover, if the piston is small compared with the wavelength

and is radiating without the presence of the wall (or baffle, as it is usually

called), the energy will have practically spherical distribution properties

within a short distance of the source. In Fig. 3-2 there is shown qualitatively

the manner in which the wave front, originating at the source contour, grad-

ually transforms, through the spreading effects associated with diffraction,

into the spherical shape characteristic of a true pulsing sphere.

Fig. 3-2. Transformation to a spher-

ical wave of a plane wave originating

from an acoustic piston whose diameter
is small compared with the wavelength.

3-10. Sources equivalent to a pulsing sphere. It is because of the

effects discussed above that the concept of the "strength'' of the source

is a useful one. The various sound sources illustrated in Fig. 3-3 are all

equivalent to a true pulsing sphere, if one considers the observable effects

in the region where the wave front has become, effectively, spherical in
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Trumpet

The mouth

Loudspeaker cone

(back enclosed)

Organ pipe

Fig. 3-3. Examples of single sources

which, at low frequencies, approximate
pulsing spheres. (The curved lines rep-

resent the shape of the wave front and
are not necessarily one wavelength
apart.)

shape. Even though the actual source

is not a sphere, its " strength" can be

computed just as readily in at least a

number of cases of practical impor-

tance. The familiar loudspeaker cone,

when vibrating at a low frequency,

moves nearly as a unit and is a close

approximation to an idealized acoustic

piston whose face area corresponds to

the area of the base of the speaker cone.

The maximum "strength," B'', of such

a radiating flat disk is 7rri£m , where rd

is the radius of the disk and |m is the

maximum velocity of the disk. A
hemispherical sound source would be

considered to have a strength B' =

2irrl^m , rh being the radius of the hemi-

sphere. A rectangular plate (radiating

from one face only) is a source of

possible "strength," ab%m , a and b

being its two dimensions, etc. In

every case the particular value of B ' is

simply inserted directly into Eq. (3-20)

,

the expression for thevelocity potential.

Working with this equation for $,

instead of the form given by Eq. (3-16)

,

all the field parameters derivable from

<£ may be evaluated by means of the

relations demonstrated earlier in the

chapter. Problems illustrating this

technique will be found at the end of

this chapter.

3-11 Limitations on the use of the

"strength of source" concept. It is

imperative to keep clearly in mind the

restrictions which must be placed upon

the above method of analysis if any

kind of agreement with experiment is

to be expected. These restrictions are

summarized as follows:

1. All source dimensions must be

small compared with the wavelength

of the radiated sound.
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2. The vibrating source surface must be moving as a unit if B' is to be
evaluated simply as area X £m- Approximate rigidity of the vibrating sur-

face is often sufficient if approximate results are acceptable.

3. Equation (3-20) should not be used for points which are too close to

the source. "Too close" means within a distance of several wavelengths.

3-12 Extension of the "strength of source" concept. The restrictions

listed above are of major importance, and all three are difficult to realize in

practice. If the wavelength is necessarily long to satisfy condition 1, one

is also restricted to a consideration of the situation at correspondingly

large distances from the source in order to satisfy condition 3. For a con-

siderable fraction of the audible band of frequencies, in the middle and in

the higher registers, the surface dimensions of musical instruments, far

from being small compared with the corresponding wavelength, have a

magnitude several times that of the wavelength. In addition, the surfaces

of very few actual sound sources move as a unit, which is necessary in

order to satisfy condition 2 above. In some of these practical cases, where

the surface geometry is not too complicated, it is still possible to use the

"strength of source" concept on a differential scale.

For such cases the surface area of the source is broken up into an infinite

number of infinitesimal sound-generating surfaces and the differential

maximum strength of each of the infinitesimal sources may be expressed,

using the known velocity at the source. The evaluation of the total func-

tion $ at some point in the medium around the source is then accomplished

by summing up the various contributions, d$, arising from the various

differential sources of typical maximum strength, dB f

, distributed over the

finite radiating surface. In Chapter 5 we shall outline the mathematics of

this process in more detail for the case of an acoustic piston surrounded by
an infinite plane baffle. Few actual sound sources, however, are susceptible

to an analysis of this type, because of the mathematical difficulties.

3-13 The double source. So far in our discussion of the production of

sound waves we have assumed that all contributions to the disturbance

originate at the surface of the vibrating source with the same phase. This

assumption has been made for the production of plane waves from an
acoustic piston and also for the case of spherical waves, whether originating

from an idealized pulsing sphere or from sources of nonspherical contour

which may be treated as equivalent to a pulsing sphere. All such sources

are called "single" sources.

There is a large and important group of actual sound sources which may
be called "double" sources, in the sense that while one portion of the

vibrating surface is giving rise to sound waves of one particular phase,
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another part of the surface is originating waves which are exactly 180° out

of phase with the first set. Far from being an uncommon state of affairs,

most actual sources of sound are of this double type. A flat plate, sur-

rounded by air on all sides and vibrating in a direction transverse to the

plane of its surface, is obviously such a double source. As seen in Fig. 3-4,

as the plate moves to the right, the

right-hand surface will be starting a

compression, a phase where p is posi-

tive, at the same time that the left-

hand surface is producing a rarefaction,

a phase where p is negative. This

180° phase relationship will also hold

for the other parameters in the wave,

such as s, 8, etc. It will be remem-

bered that in discussing radiation from

an acoustic piston it was assumed that

sound waves were produced from the

front face only. In practice this could

only be realized by completely enclosing the back face of the piston, so

that no radiation could occur. Without such an enclosure, an acoustic

piston is inevitably a double source.

Action of a "double" source.

3-14 Examples of the double source. There are numerous examples

of the double source. For all the stringed instruments, the transverse

motion of the vibrating string sets up two out-of-phase disturbances origi-

nating on opposite sides of the strings, the two contributions to the radiated

energy originating in this case at two almost identical positions in space.

A tuning fork is really a double double source, since each prong sets up its

own pair of wave disturbances. The cone of a loudspeaker, vibrating

freely in air, without enclosure or baffle of any kind, is another example

of the double source.

It is quite reasonable to expect any such double source to be a poor

radiator of sound, since two wave trains of opposing nature are set up.

This is easily demonstrated with a tuning fork, a good example of a double

source. When the fork is held in the hand after being struck, the sound

produced will be nearly inaudible, even though the fork is vibrating vigor-

ously. This will be particularly true if the frequency is low, say in the

neighborhood of several hundred cycles -sec
-1

. This phenomenon of low

radiation efficiency is a consequence of the highly localized nature of the

disturbance of the surrounding fluid, particularly when the two out-of-

phase waves are generated at points in space whose distance apart is small

compared with the wavelength.
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The flow lines around a vibrating plate or bar are shown in Fig. 3-5. If

the motion back and forth is slow, corresponding to a low frequency and

therefore to a long wavelength, the medium tends to circu- M . .

late from the side of the plate or bar where the pressure is

higher than normal to the other side, where the pressure

is below normal. As a consequence of this local compen-

sation for the pressure differences, very little variation in

pressure is observed a short distance away. In other

words, the radiated wave energy is small. The effect may
be clearly seen if a stick is moved slowly back and forth

through water. Very few ripples (the evidence of wave

production) will be visible around the stick.

3-15 Radiation from a double source as a function of FlG
-
3"5

-

J
low

frequency. The effects described above are most pro-
double source

nounced when the frequency is low. For any such vibrat-

ing body acting as a double source, the energy radiated in the form of

waves increases rapidly with increase of frequency. It is primarily the

time factor which accounts for this frequency dependence. As the vibra-

tion frequency is raised, it becomes increasingly difficult, because of the

finite velocity of propagation for any pressure disturbance, for the local

flow to equalize the pressures on the two sides of the plate in so short a

time interval. As a result, larger variations in pressure occur near each

component of the double source and two wave trains of increasing amplitude

and intensity are set up as the frequency is increased.

3-16 Quantitative analysis of the double source. In discussing the

radiation properties of "single" sources of sound waves it was necessary to

introduce the concept of the strength of the source, an artifice whose use

minimizes to some extent the mathematical difficulties associated with the

source contour. Even so, there are serious restrictions placed upon the

equations obtained with this approach. The difficulties are even greater

when a careful analysis of the radiation from a double source is attempted.

Much of the analytical information in acoustics may be obtained by con-

sideration of the behavior of a highly idealized model, even though actual

sources are but crude approximations to this model. Since the results of

the present analysis indicate only the general behavior of double sources,

we shall present only an outline of the mathematics.

Two small pulsing spheres of identical maximum strength B' but of

opposite "polarity" are imagined close to each other at points Oi and 2

in Fig. 3-6. For any point a in the surrounding air, the total velocity

potential 3>a may be written in terms of the contributions due to the two

components of the double source, that is,
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$a = B , COS ^ (d - n) +
4tt

a COS - (ct - r2) + ]|-

69

(3-21)

n r2

If the distance apart, d, of the two sources is small compared with the dis-

tances n and r2 to the point a, it is easy to show that the total value of 3>a

is, to a close approximation,

$a
B'd

2rX
cos 6 sin

•2tt
(ct - r) + •] (3-22)

Fig. 3-6.

where r is the mean distance from the point a to

the mid-point of the line Oi02 . It is interesting

to compare this expression for the function $
for a double source with Eq. (3-20), which is for

a single source. In both cases the maximum
value of $ (= <£m) is a function of B'/r,

as would be expected. But in the case of Eq.

(3-22) there are the additional factors cos 6 and

d/\. At a value of 6 = ir/2, 3>
tt is zero for all

values of r and £; at 6 = 0, the coefficient of the

. .

' B'd '

.

sine expression, i.e., $m = 7^- cos 6, is a maximum.

It will be remembered that this is the exact polar distribution of electric

potential around a small electric dipole. (Indeed, the product B'd is quite

similar to the electric moment of such a dipole.) Along a line perpendicular

to O1O2 (6 = 7r/2) and passing through its mid-point, one would expect

the acoustic potential to be zero, since it is the locus of points equidistant

from Oi and 2 .

The appearance of the factor d/\ is interesting and most significant from

a practical point of view. As the wavelength is increased (or the frequency

decreased), all other quantities in Eq. (3-22) remaining fixed, the maximum
value of $ decreases. A decrease in <£m means a decreased sound intensity

everywhere around the double source. It is easy to see why $m varies in

this way. From the point of view of interference, the larger X is in com-

parison to d, the distance between Oi and 2 ,
the less important becomes

the fact that point a in Fig. 3-6 is farther from 2 than from 0\. As X is

increased, the relative phase of the two contributions arriving at a ap-

proaches that of the dipole components themselves, i.e., 180°, and <£m ,

therefore, approaches zero. For this reason all double sources, of whatever

shape and complexity of contour, are very poor radiators of sound at low

frequencies.
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3-17 Comparison of total power radiated by different types of sources.

(1) Source of plane waves. Consider a large, flat circular plate, acting as a

single source (i.e., radiating from one side only), and vibrating so as to give

rise to a steady stream of plane waves. The total average power radiated

by the plate will be the product of the power per unit area and the total

area, S. Making use of Eq. (2-29b), this total power U may be written in

the form

U = 27r
2poca/2

>S = H (5') 2
, (3-23)

where B' is the maximum strength of the source.

(2) Single source of spherical waves. This classification includes an ideal

pulsing sphere and also the more practical sources whose radiation proper-

ties approximate those of a true pulsing sphere (as discussed in Section

3-10). For a pulsing sphere of radius r , the total instantaneous power
associated with the fluctuating component of the pressure p is pj-S, where S
is the area of the sphere and £ is the instantaneous velocity of its surface.

Making use of the relationships for spherical waves, we may write for the

instantaneous power

^ =^ = "»S(-IH
where $ is taken to be of the form specified by Eq. (3-20), for a spherical

source. To obtain the expression for the average power radiated from the

surface of the sphere, we multiply Ui by dt, integrate over the time, t = T,

and divide the result by T. By this mathematical procedure, we obtain

U = 2tt
3 ^ &/4£2 = I ^P(B')K (3-24)
c Ac

(3) Ideal double source, or acoustic dipole. The computation in this case

is based on the rather special assumptions which lead to Eq. (3-22) . This

equation, it will be remembered, is valid only at distances large compared

with the distance apart, d, of the two components of the dipole. Since the

same total energy must flow per second across the surface of any sphere

surrounding the dipole, we might just as well take a sphere of large radius,

where Eq. (3-22) is valid, since this expression is somewhat simpler than

the equation for $ at nearer points. An integration process only slightly

more complicated than that used in the case of a single source yields the

following expression for the average radiated power:

U = | tt
5 & d^ipS* = § tt

3 p-\ dT(B') 2
,

(3-25)
o C o C

where £m , S, and B' refer to either component of the dipole.
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An inspection of Eqs. (3-23), (3-24), and (3-25) will show the radiated

power U, in the three cases, to be a function of different powers of S and

of /. For plane waves, U <* S, while for the single or double source of

spherical waves, U °c S2
. This shows the special importance, in the case of

spherical waves, of using sources of large area if one is to achieve a reason-

able radiation efficiency. The frequency factor / is raised to the second

power for plane waves. In the case of the single source of spherical waves,

however, U °c /
4

, while for a double source, U <* /
6

. The factor f
2

is

to be expected because of the fundamental energy considerations asso-

ciated with simple harmonic motion. The dependence of U upon a higher

power of the frequency, when the energy flow possesses spherical divergence,

will appear more reasonable when we have developed the notion of " acous-

tic radiation impedance"; for the present we shall simply note the fact.

For the double source, however, we can say here that this extreme sensitivity

of U to frequency changes is a direct consequence of the "local flow" that

tends to accompany the vibration of any double source, a process which

always reduces the radiated wave energy, especially at low frequencies.

m

3-18 Practical double sources. The principle of the baffle. The model

of a double source that we have set up, i.e., a pair of small spheres "pulsing"

periodically with a phase difference of 180°, is, of course, never encountered

in practice. A vibrating rigid circular plate, whose radius r is small com-

pared with the wavelength in the emitted sound, will radiate approximately

as would a pair of spheres, where the "strength" of each of the equivalent

spheres is equal to irr§|. Since the distance apart of the dipole components

is in this case related to the thickness of the plate, the

radiated energy will be quite small (since d is small in

Eq. (3-25)). This is essentially the situation when a

cone speaker is vibrating at a low frequency, with no

surrounding box or "baffle
'

' plate of any kind. Under
these conditions, where X is much greater than r , very

little audible sound is detected a short distance away.

Most actual double sources involve, to a greater

or less degree, the principle of the baffle. In Fig. 3-7

a rigid plate has been inserted between the two com-

ponents of a double source, as shown. It is quite

obvious that from a qualitative point of view such a

baffle will seriously interfere with the local flow back

and forth in the immediate vicinity of the dipole com-

ponents. The length of the path over which such a

flow might take place is shown in the figure to be

©
0,

Fig. 3-7.

of the baffle.

Action
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approximately that of the line abc. If each of the source components is

vibrating at a rapid rate, the flow will only partially equalize the pressure

differences which tend to be set up by Oi and 2 . As a result, wave gener-

ation and propagation set in and the general efficiency of energy radiation

is increased.

The geometry of many musical instruments supplies a sort of self-baffling

action. In Chapter 7 we shall have more to say about the physics of

the violin, but to illustrate the present point it can be said that most of the

actual sound energy coming from a violin is not radiated directly from the

strings, but from the larger areas of the wooden body of the instrument,

which are set into sympathetic vibration. If one side of the instrument is

considered to be a thin flat plate (it is not truly flat, of course), the violin

can be pictured as a collection of small acoustic dipoles, somewhat as in

Fig. 3-8, where the + and — signs are used to represent the 180° phase

relationship. As the plate vibrates transversely to the plane of its surfaces,

the plate as a whole acts a good deal like the baffle plate of Fig. 3-7 for each

one of the small acoustic dipoles. Since the radiation of the whole plate

is the sum effect of the radiation of its separate dipoles, any of the larger

areas of the instrument then becomes a reasonably efficient radiator.

In a later chapter we shall return to the subject of the baffle in a discus-

sion of the general design features of wide-range loudspeaker systems. In

addition, some mention will be made of a speaker enclosure, sometimes

known as a " phase inverter." For the lower frequencies, such an enclosure

effectively transforms the speaker cone, intrinsically a double source, into

what is in effect a single source. This is brought about by coupling the

rear side of the speaker cone to a resonator, the radiation from which is

virtually in phase with the disturbance originating from the front surface

of the cone. In this way effective radiation may be obtained down to the

very lowest audible frequencies.

+ + + + + + + +

Fig. 3-8. A vibrating plate considered as an array of acoustic dipoles.

PROBLEMS

1. A pulsing sphere has a radius of 1.0 maximum value of <£, (c) the maximum
mm and is pulsing in air at a frequency of value of £, and (d) the maximum value

100 cycles-sec
-1

. The maximum radial of p.

velocity of its surface is 0.1 cm-sec-1 . 2. Assuming that the wave front has
(a) Find the value of $ as a function of r. become virtually plane at the position

At the position r = 30 meters, find (b) the r = 30 meters in problem 1, compute the
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energy density at that point and also the

intensity in cgs units.

3. A large pulsing sphere has a radius

of 1 meter and is pulsing in air at the ultra-

sonic rate of 35,000 cycles-sec
-1

. The
maximum radial velocity of its surface is

0.1 cm-sec-1 , (a) Find the expression for

the maximum value of <J> as a function of r.

At the position r = 2.0 meters (measured

from the center of the pulsing sphere), find

(b) the maximum value of <£, (c) the maxi-

mum value of £, and (d) the maximum
value of p.

4. A pulsing sphere has a radius of

1.0 mm and is pulsing in air at a frequency

of 100 cycles-sec
-1

. The amplitude of

motion of the surface of the sphere is 0.01

cm. (a) Find the maximum value of <£

as a function of r. At the position r = 30

meters, find (b) the maximum value of <£,

and (c) the maximum value of p.

5. In which of the following cases

might it be correct to apply the concept of

the strength of the source in order to make
use of the spherical wave relations? (a) A
soprano singing a note of high frequency,

(b) A bass singing a note of very low

frequency, (c) A loudspeaker cone of

diameter 6 inches, radiating from one side

only without a baffle and vibrating at a

frequency of 50 cycles-sec
-1

, (d) The ra-

diation from the mouth of a large parabolic

reflector at the focus of which is a small

high frequency whistle. (Consider the

mouth of the reflector as the source.)

6. Name as many musical instruments

as you can, classifying each as predomi-

nantly a single or a double source.

7. An acoustic piston is radiating into

air from the front face only. It has a

radius of 1.0 cm and is oscillating at a

frequency of 200 cycles-sec
-1

. No baffle

plate is used. The amplitude of motion of

the piston face is 0.01 cm. (a) Calculate

the strength of the source, (b) Find the

maximum value of $ at a distance 20

m from the center of the piston face,

(c) Compute the maximum value of p at

the same point.

8. An acoustic piston of radius R
t

moving with a velocity x and radiating

from the front face only, is surrounded by
an infinite plane baffle lying in the plane

of the piston face. The piston may be

considered to have a maximum strength

2B f

, where B' is irR 2(x)m . Explain why
this is correct.

9. Making use of the statement in

problem 8, compute the answers to parts

(a), (b), and (c) of problem 7, if the piston

face is surrounded by an infinite plane

baffle.

10. A small pair of pulsing spheres con-

stitutes an acoustic dipole. Assume a

fixed value for the polar distance r such

that Eq. (3-22) is valid. What is the

effect upon the rms pressure at such a

point (the polar angle also being fixed)

of (a) doubling the frequency, (b) doubling

the amplitude of motion of each sphere,

(c) doubling the distance separating the

dipole components?

11. (a) Derive an expression for the

dilatation 8 for spherical waves in terms of

£ and r. (b) Show that for large values

of r the expression reduces to d£/dr.

(Compare with the plane wave value,

d£/dx.)



CHAPTER 4

INTERFERENCE PATTERNS. DIFFRACTION

4-1 Definition of interference for wave motion. Broadly speaking,
interference may be said to occur for waves whenever two or more motions
are simultaneously impressed upon a particle or a single set of particles of
the medium. In this sense, any complex wave consisting of two or more
simple harmonic components, of the same or of different frequencies, might
be described as an interference phenomenon. As the term is usually
applied, however, interference refers primarily to combination effects

associated with waves of the same frequency originating from different
sources or from different areas of the same source. We have already con-
sidered one such effect in the phenomenon of beats, Chapter 1. The sub-
ject of stationary waves, which will be discussed in Chapter 7, is a most
important example of wave interference. Throughout the remainder of
this book we shall have frequent occasion to refer to interference in con-
nection with almost every aspect of acoustics.

4-2 Diffraction. In this chapter we shall be concerned primarily with
the interference effects classified under the subject of diffraction. The
particular interference patterns set up in the medium whenever waves
originate from sources whose dimensions are of the same order of magnitude
as the wavelength, or whenever waves stream past obstructions of any sort,

are, in general, called diffraction patterns.

4-3 Diffraction in acoustics and in light. The theory of wave inter-

ference, and of diffraction in particular, may be discussed with perfect
generality for any type of wave— longitudinal or transverse, mechanical or
electromagnetic. A comparison of the interference effects in acoustics
with those occurring in light is therefore logical. The subject of diffrac-

tion is of much greater practical importance in acoustics than it is in light.

The student of elementary physics may remember that particular care was
needed to demonstrate even the existence of diffraction in light. Pinholes,
slits, diffraction gratings— these are part of the paraphernalia of the
scientist and the laboratory, not of everyday living and experience. In
acoustics no such special equipment is required.

When a listener is directly in front of a radio loudspeaker, the music
sounds " brilliant," and speech is crisp and easy to understand. At posi-
tions off to one side, both music and speech are somewhat muffled and are
lacking in the important higher frequencies. This is an effect associated
largely with the distribution of the sound diffraction pattern (although
reflection by the walls of the room also plays a part). Similarly, the phe-

74
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nomenon of diffraction makes it possible for a shout to be heard by a person

around the corner, even though he is out of the direct line of sight. Many
other examples might be cited to illustrate the importance of diffraction in

acoustics.

4-4 Importance of the ratio of wavelength to dimension. The wave-

lengths for sound waves range from about one inch at the high frequency

end of the audible spectrum to approximately 20 feet at the low frequency

end. This range is of the same order of magnitude as the dimensions of

typical sound sources, sound receivers, doorway openings, rooms, the

human ear and mouth, etc. — in general, as the dimensions of many com-

mon objects, animate and inanimate, in the field of sound. This is the

primary reason why interference effects, particularly of the diffraction

type, are so important in acoustics. In light, the wavelengths are all

smaller than 10-4 cm. This is a number very small indeed compared with

the dimensions of ordinary light sources, receivers, mirrors, lenses, the eye,

etc., and it is this relationship that makes interference and diffraction

effects of minor importance in the ordinary behavior of light. For waves in

general, as we shall see presently, the primary factor to consider is not the

wavelength alone or the dimensions of the source or obstruction alone, but

the ratio of wavelength to dimension.

As an introduction to the general problems of diffraction, we shall con-

sider the single slit pattern, usually discussed in books on optics. The
simplicity of its geometry and the qualitative similarity between the

diffraction pattern of the single slit and that of many practical sources of

sound waves make the analysis well worth while.

4-5 The single slit pattern. Simplifying assumptions.

shows, in section, a thin rigid plate,

opaque to sound waves except for

an opening in the nature of a

narrow slit whose long dimension is

perpendicular to the paper and

whose width, measured in the plane

of the paper, is b. A plane wave of

wavelength X, moving up from the

left, is supposed to strike the plate.

Only that portion of the disturbance

in the neighborhood of the slit will

pass through; the rest will be cut

off by the plate. The problem is

to investigate the distribution of

energy at the right of the plate.

Figure 4-1

Fig. 4-1.
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If the slit is very long, we may assume that in the region at the right of

the plate conditions are uniform along any one line perpendicular to the

plane of the paper (and hence parallel to the long dimension of the slit).

Whatever deviations we may discover in uniform energy distribution will

occur with variations of coordinates in the plane of the paper only. This

means that the energy will have some kind of cylindrical rather than

spherical divergence. As a result, we may, in effect, reduce the problem

from that of a space distribution to one involving two dimensions only, in

the plane of the paper. What is discovered to be true in this plane will be

true for any such plane perpendicular to a long narrow slit. (Further

reference to these statements will be made later in the chapter.)

One more assumption must be clearly stated before we proceed with the

analysis. We shall consider the intensity only at points to the right of the

plate whose distance from the slit is large compared with the total width of

the slit. This means that a line drawn from such a point to the top edge

of the slit is essentially parallel to the line drawn from the same point to the

bottom of the slit. As a further simplification, we shall restrict all such

points to the arc of a circle (Fig. 4-1) whose center of curvature is the

center of the slit. The significance of this assumption will appear presently.

4-6 Application of Huygens' Principle. According to the well-known

construction of Huygens, so useful in optics and of equal validity for the

longitudinal waves of acoustics, the propagation of a wave disturbance may
be studied by considering every point on a given wave front to be a separate

small source of energy. The portion of the wave front that passes through

the slit in Fig. 4-1 is a narrow rectangle in shape. Imagine this area to be

subdivided into a large number of still narrower rectangles whose length,

in each case, is the long dimension of the slit and whose width is a small

fraction of the slit width. Each of these subdivisions is to be considered

as a separate source of the Huygens type.

In Fig. 4-1 point a is located on a line making an angle /3 with the normal

to the plate. The distance from this point to the various area elements of

the slit opening varies from element to element, being the least for the

element next to the lower edge of the slit, at m, and greatest for the element

at the extreme top, at m' . Assuming the width of any one area element to

be small compared with the wavelength, we may consider its effect at a to

be essentially that due to a very small source of the single type. The
phase of the acoustic pressure p produced at any one instant in the air at a,

due to this particular area element, will depend both on the particular

phase occurring at this time at the slit and on the distance from the

area element to the point. If, at this same instant of time, we compare
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the phase of what arrives from the lowest area element with what is contrib-

uted by elements higher up, there is plainly a progressive phase lag, from

the bottom to the top. This phase relationship will always exist, regardless

of changes in the wave disturbance occurring at the slit.

4-7 Vector method of determining the acoustic pressure at point a.

In Fig. 4-2a, a series of small vectors of equal length are laid off end to end,

each one representing the maximum pressure contribution, Apm , at point a

due to each of the area elements of the slit opening. The first vector, at

the bottom, represents the effect due to the element next to the lower slit

edge. Each successive vector above the first is rotated by the same small

angle, to represent the progressive phase shift at point a due to the greater

and greater distance of travel. The total pressure effect at a may be found

(using the methods discussed in Chapter 1) by drawing in the vector pm ,

which represents the vector sum of the separate contributions. The

angle y is the phase lag between the contribution from the topmost area

element as compared with that from the first and lowest one, and is an

angle which will enter in an important way into the analysis of this problem.

The angle is the phase lag between the resultant vector pm and the first

small contribution. (Note that this use of vectors to indicate magnitudes

and phases does not imply any particular spatial direction on the part of p.

Acoustic pressure is a scalar.)

It should be quite obvious that

the correctway to sum up the various

contributions from different parts of

the slit area will be to let the area

elements shrink in width until they

become true differentials. The vector

polygon of Fig. 4-2a will then become

an arc of a circle (Fig. 4-3) , where the

resultant pressure pm constitutes the

subtending chord . The length of the

arc, labeled (pm)o in the diagram, is

the graphical equivalent of adding

the separate small contributions,

assuming no phase differences among

them (Fig. 4-2b).

At the start of this analysis one of

the simplifying assumptions was that

the typical point, a, lies upon a circle (b)

whose center coincides with the center Fig. 4-2.

UPm

( Pm)Q

(APm )

t

(Apm )

2
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of the slit. The very interference effects which we are discussing depend,
of course, on slight variations in the distances between point a and the
different area elements of the slit, thus producing phase effects. If, how-
ever, as was assumed, the small dimension of the slit is much less than the

radius of the circle, these small variations in distance will constitute a
negligible fractional change in the total distance from point a to any point

on the slit area. As a result, we may assume that for any point on the
circular arc the magnitude of the maximum acoustic pressure Apm remains
essentially constant, even though the phase of the instantaneous pressure

may vary. Due to the cylindrical divergence of the wave, one would
expect, for any locus of points other than a circular arc, some kind of de-

pendence of Apm upon the distance from the slit (not the same law as for

spherical divergence, however).

By holding the distance virtually constant, we will avoid this additional

complication. Our primary investigation will be into the effect of varying
the angle 0, in Fig. 4-1.

4-8 Essential geometry and equations. Consider the geometry of

Fig. 4-3. The following two equations should be self-evident:

and
(pm)o = 2rd,

pm = 2r sin 6,

(4-1)

where (pm)o is the total length of the arc, which

in turn signifies the sum of all the small con-

tributions, assuming no phase differences. This

sum, (pm)o, is in actuality the total value of pm
to be observed at the point a , in the direction

normal to the plate, where the angle (3 is zero

(Fig. 4-1). For a point along this direction,

all distances to the various area elements are

virtually the same, and therefore the arc of the

vector polygon becomes a straight line. FlG - 4-3.

Eliminating r from the two equations (4-1), we may write

pm = Wi sin 6
(4-2)

This is the fundamental equation which describes the diffraction pattern
to the right of the plate. It relates the total observed pressure pm for any
point a to the value which obtains at the central point a , through the
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parameter 6, which appears in the vector diagram. The angle 6 is not

directly measurable, but it is simply related to the polar angle /3 in Fig. 4-1.

From Fig. 4-3,

7 = 20, (4-3)

and from Fig. 4-1 the angle 7 is

7 = r 2tt, (4-4)

where d is the amount by which the path am' exceeds the path am and X

is the wavelength. In addition, from Fig. 4-1,

sin (3 = t'

Therefore, combining Eqs. (4-3), (4-4), and (4-5), we have

. „ IX -
sm a =

TV b

(4-5)

(4-6)

Equations (4-2) and (4-6) are the important ones for the determination

of the complete nature of the slit pattern. Instead of introducing (4-6)

into (4-2) to eliminate the parameter 6, it is more convenient to keep both

equations, using (4-2) as a sort of " universal" relation, independent of

X or d, and making use of (4-6) whenever we wish to describe the actual

pattern when confronted with a particular value of the wavelength and

the slit width.

4-9 The variation of pm with 0. The graph of pm vs 6 (the broken

line of Fig. 4-4) is a curve having alternate algebraic maxima and minima

above and below the line pm = 0. When = 0, pm = (pm)o. Between

(pm) , arbitrarily taken=I.O

4ir^ '-3ir -2tt\ /-it U tt\ / 2ir 3ir 4ir

Fig. 4-4. The quantities pm and (pOT )
2 plotted as a function of 6, froin the equation

» = (p™)o sin 0/0.
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each successive maximum and its adjacent algebraic minimum lies a

point where pm is zero. These latter points occur when = rar, where

n is any integer. To find the values of 6 for the maximum and mini-

mum values of pm , it is necessary to find dpm/dd and set this equal to

zero. The necessary condition is found to be that 6 = tan 6. The first

few roots of this equation are = 0, lASir, 2AQir, SA7t, . . ., which ap-

proximate, after the first root, to fn-, -§7r, Jtt, etc. Whether a root gives a

maximum or a minimum for pm is of no importance as far as sound intensity

is concerned since, in general, the intensity goes up as the square of the

pressure and is therefore always positive whether pm is positive or negative.

The intensity maxima are therefore approximately halfway between the

zero or null points.

We may assume that the intensity I is proportional to (pm)
2

. The graph

of (pm)
2 vs 6 is given in Fig. 4-4 for the first few intensity maxima symmetri-

cally located on either side of the central maximum, which is by far the

greatest. The heights of the first few secondary maxima, expressed as

fractions of the central intensity maximum, are given in Table 4-1.

TABLE 4-1

Intensity

Central maximum 1.0

1st subsidiary maximum 0.047

2nd subsidiary maximum 0.016

3rd subsidiary maximum 0.0083

4th subsidiary maximum 0.0050

4-10 The variation of (pm)
2 with the polar angle p. To translate the graph

of Fig. 4-4 into its equivalent in terms of the angle /3, it is necessary only

to make use of Eq. (4-6), relating /3 to 0. For a given value of X and b the

coefficient on the right of (4-6) is a constant, so that sin (3 « 0. The plot

of (pm)
2 vs j3 will look a good deal like Fig. 4-4, since (3 will increase with 6,

although not linearly. In general, however, the spread or compression of

the pattern along the /? axis will depend markedly on the ratio of X to b.

Any given feature of the curve of Fig. 4-4 will occur at large values of /3

when X/6 is a large number and, conversely, at small values of /3 when
\/b is a small number.

4-11 Representation of intensity distribution on a polar graph. A con-

venient way to picture the spread of wave energy from a slit or from an

opening of any other shape is to make use of a polar graph. Figure 4-5

is such a polar plot for a slit in the case where X is one-half of b, the slit

width. In this diagram the radius vector, drawn from the mean position
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/8=30e

0=3OC

Fig. 4-5. Polar distribution pattern for

a slit width b equal to twice the wavelength.

of the slit to some point on the

curve, has a length proportional to the

observed intensity in the direction 0.

For the vector drawn, the intensity is

about f that observed at the peak of

the central maximum. A little study

will show that this type of plot may
be used to indicate all the features

of a cartesian plot of intensity vs j3,

and at the same time it gives a direct

spatial picture of the distribution. In

general, there will be a series of "lobes"

of decreasing prominence at increasing

distances from the central lobe (or

maximum) . Between lobes there is a

direction along which the radius vector

has zero length, corresponding to the

null points in Fig. 4-4.

In Fig. 4-6 three polar distribution

graphs for different values of the im-

portant ratio \/b have been drawn to

approximate shape. In Fig. 4-6a, X is

very large compared with b. An in-

spection of Eq. (4-6), relating /3 to 0, will show that the right-hand side can

be no greater than 1, since the largest possible value for /3 is obviously

±7r/2. If the ratio X/6 is large, sin /3 will become equal to unity with a

very small value of 0. This means that for any value of jS between ±w/2

Slit

(c)

Fig. 4-6. Polar distribution of sound
intensity for a slit width b (a) much
less than X, (b) equal to X, (c) much
greater than X.
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we shall be dealing with practically constant ordinates in Fig. 4-4, ranging

from some such point as a to point a'. The polar intensity graph will

therefore be almost a circle, as shown. For the distribution in the plane

of the paper, this behavior is essentially that of a point source.

If, on the other hand, X is very small compared with b, so that the ratio

\/b is a very small number, there will be quite a different pattern. In

this case j8 will increase very slowly with an increase in 6 and the pattern

will be highly compressed around the normal direction. In this kind of

distribution (see Fig. 4-6c) there is virtually a "beam" of waves leaving the

slit opening, with practically no energy spread away from the forward

direction. This is the usual situation for light, where the ratio A/6 is

almost always a very small number.

Between the two extremes just discussed, when X is of the same order

of magnitude as b, the polar diffraction pattern will be of the type shown

in Fig. 4-5. If X = b, there will be just the one central lobe, since the first

null point will occur at exactly j3 = ir/2, as shown in Fig. 4-6b.

4-12 General significance of the diffraction pattern for a single slit.

The detailed analysis we have just made is admittedly an approximate one.

The assumptions are essentially those characteristic of Fraunhofer diffrac-

tion in optics, where the rays leaving different parts of the slit are taken to be

parallel. In optics, the use of a collecting lens to the right of the plate

makes it possible to bring such a bundle of parallel rays to a focus at a

position quite near the plate. Lenses are rarely used in acoustics, so

we must consider the above results to be valid only for distant points.

The general conclusions reached are nevertheless useful in predicting the

type of radiation to be expected from a slit and from openings of other

shapes as well. The same ratio of wavelength to dimension is the signifi-

cant factor for any type of opening.

4-13 Openings of other shapes. The short rectangle or the square.

If the long dimension of the slit is reduced so that it becomes comparable

to the wavelength in the disturbance, one finds, as would be expected, a

diffraction pattern in the horizontal plane (the plane including the long

dimension of the slit) as well as in the vertical plane. The spread of the

maximum and minimum positions, however, depends upon fundamentally

the same relations as discussed above. Patterns occur in both planes,

with considerable modification of each because of their interdependence.

With a rectangle having equal sides (a square), the patterns along the verti-

cal and along the horizontal are identical, as one would expect.

In this connection, a further comment may be made on the assumptions

in the single slit analysis. As will be remembered, the slit was taken to
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be very long and from the preceding paragraph it should be clear that in the

plane including a rectangular dimension long compared with the wavelength

the diffraction pattern will be beamlike, with practically uniform intensities

over the cross section of the beam. Hence the assumption that there is no

intensity variation along a line parallel to the long dimension of the slit

was justified.

The exact description of the intensity distribution in all possible direc-

tions relative to the plane of a plate with a rectangular aperture is hard to

give, because of geometrical difficulties in the analysis. Fortunately, in

acoustics the diffraction from a circular aperture is of more practical im-

portance than from apertures of any other shape, and while the mathe-

matics is too involved to give here, the results are simple enough to sum-

marize and discuss.

4-14 Diffraction pattern for a circular aperture. The intensity distribu-

tion, in this case, will have circular symmetry around a line perpendicular

to the plane of the aperture at its center. Airy, Verdet, and others have

computed the intensity for a sinusoidal wave as a function of the angle of

deviation from the normal to the plane Of the aperture. Due to the

symmetry in the problem, coaxial regions of maximum intensity alternate

with regions of minimum intensity. The distribution may be visualized by

imagining Fig. 4-5 to be rotated around its axis of symmetry. The space

surface so produced can then be considered as an intensity plot for different

directions. Figure 4-7 represents such a surface.

The directions of zero sound intensity (corresponding to the zero inten-

sity directions for the slit) are found to be given by an equation somewhat

similar to Eq. (4-2) for the slit. It will be recalled that in the case of the

slit the intensity is zero when 6 is equal to mr, where n is any integer. The

corresponding values of the angle /3 are given by

sin |8 = n |- (4-7)

For the circular hole, Eq. (4-7) may be written

sin = n' ^, (4-8)

where D is the diameter of the hole and where n', instead of being an integer,

as for the slit, is now a number which must be computed for each successive

point of zero intensity, The values of n' for the first three null points are

1.22, 2.23, and 3.24. The secondary intensity maxima at the angles be-

tween those for the null points are smaller in relation to the central maxi-
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Fig. 4-7. Space diagram of intensity distribution in front of a plate with a circular

hole. A vector drawn from the center of the hole to any point on the surface has a

length proportional to the sound intensity in that direction, as observed at a large fixed

distance from the hole.

mum than in the case of the slit pattern. Table 4-2 lists the relativevalues

for the first few such maxima.

TABLE 4-2

Relative

intensity

Intensity in db

referred to

central maximum

Central maximum
1st subsidiary maximum
2nd subsidiary maximum
3rd subsidiary maximum
4th subsidiary maximum

1.0

0.017

0.0041

0.0016

0.00078

0.0

-17.7
-23.9
-28.0
-31.1

Since most of the energy is radiated within the boundaries of the central

lobe, we may say, making use of Eq. (4-8), that most of the energy lies

within a cone, half of whose plane vertex angle is given by sin = 1.22X/D.
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Conclusions regarding the behavior of the diffraction pattern with varia-

tions in wavelength and in hole size are quite similar to those for the slit

pattern. When the hole is very small compared with X, the intensity dis-

tribution to the right of the plate will be very nearly spherical. On the

other hand, when the diameter of the aperture is very large compared

with X, the energy will proceed as a narrow beam whose cross-sectional

area approaches that of the hole. When the hole diameter is approxi-

mately twice the wavelength, there will be a distribution such as is

represented by Fig. 4-7.

4-15 Practical examples of the diffraction pattern for a circular aper-

ture. In acoustics the usual aim is to spread or diffuse the sound over as

large a solid angle as possible. A speaker standing in front of a large

audience desires to be heard clearly by everyone, those sitting at the sides

as well as persons directly in front of the speaker. The various observed

relative intensities of the instruments of an orchestra should, ideally, be

independent of the particular position of the listener with respect to each

of the instruments. In short, the diffraction pattern of the speaker, the

singer, or the musical instrument should be as broad as possible. The

shapes of most sound-emitting sources are approximately circular; some,

like the instruments of the horn family, the drum, and the radio loudspeaker

cone, are exactly circular. A glance at Table 4-2 will show that for the

circular hole diffraction pattern practically all of the energy is concentrated

in the central maximum. It is therefore necessary, for wide angle radia-

tion, that the first null point (0 = tt) correspond to a value of close to tt/2.

This implies, from Eq. (4-8), that the effective diameter of such a circular

source can be no greater than 1.22X. Considering an average source to

have a radiating area whose diameter is of the order of 6 inches, this means

that there will be good polar spread for frequencies of say 2000 cycles and

lower, but for higher frequencies the radiation pattern will take on more

and more of a directional nature.

Examples of such diffraction effects are numerous and commonplace.

From a position behind or well to one side of a speaker, speech may be

difficult to understand because the higher frequencies, so essential to speech

comprehension, are propagated forward in a beamlike manner. The lower

frequencies, which incidentally carry a good part of the energy in speech,

diffract readily to the side and in the case of the very lowest frequencies,

where the mouth and head dimensions are small compared with the wave-

length, low frequencies will even diffract to the rear. Similarly, the higher

frequencies are always more apparent in the sound from a radio loudspeaker

when one is sitting directly in front of the cone— in the "beam." The
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low frequencies, on the other hand, are radiated with practically spherical

divergence and are heard equally well from any position.

For reasons of efficiency, it is desirable in some applications to confine

the sound radiation to a relatively small solid angle. It is highly wasteful

of acoustical power to spread it in all directions when the listeners are con-

centrated within one special area, as for instance at public meetings, out-

door musical performances, and the like. The spread due to diffraction

may be minimized by several means. If no electrical equipment is to be
used, large curved reflectors may be erected behind the platform, to return

the backward radiation to the audience. Factors associated with diffrac-

tion are also involved and since such a device is effectively a sound source

of large area, it will confine the reflected energy to a beam in the desired

direction. When electrical reproducing equipment is employed it is cus-

tomary to use horns, which are coupled to the loudspeaker units. Such
horns should have mouths of large size.

4-16 Multiple slits and openings. Books on geometrical optics com-
monly consider the two-slit diffraction pattern, the multiple-slit problem
(i.e., the diffraction grating), and also the case of two adjacent circular

apertures. This latter consideration is essential to the understanding of

optical resolving power, so important in the design of optical instruments.

For certain special aspects of applied acoustics these cases are of some im-
portance and full discussion of them will be found in any good book on
optics. In Chapter 11 we shall have occasion to refer to the acoustic

analog of the problem of two adjacent apertures in connection with the use
of dual speakers in wide-range reproducing systems. Such speakers are

often so placed that their diffraction patterns overlap, a matter of some
interest in the total radiation distribution.

We might mention at this point that an acoustic diffraction grating may
be constructed so as to operate on exactly the same principle as the optical

grating. In the acoustic grating, the opaque regions may be wooden
slats separated by air spaces of an inch or so. A plane sound wave,
" sprayed" against such an array, may be analyzed for its frequency com-
ponents just as light is analyzed with an optical grating. The resolution

will be rather poor, however, since it is difficult to use many slits, due to

considerations of size (resolution improves with the number of slits)

.

4-17 Diffraction effects around the edges of obstructions. In optics

we are accustomed to the sharp geometrical shadows cast by obstructions

opaque to light. The diffraction patterns that occur in the neighborhood
of the shadow boundary are confined to a very small angular region and are

ordinarily unnoticed by the eye. In acoustics the same general phenomenon
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will occur, but because of the much longer wavelength the angular spread

of the diffraction pattern may be quite large and the effects are therefore

of much greater importance. As will be seen, sound waves of some fre-

quencies cast acoustical " shadows" nearly as sharp as the optical ones.

For other frequencies, however, such shadows are almost nonexistent

because of energy which flows around the edge of the obstruction, well into

the so-called shadow region.

An analysis (due to Fresnel) will follow in the next section. Like the

Fraunhofer diffraction analysis for the single slit, it is somewhat of an

approximation, but it will yield useful information nevertheless. The

results may be used for points somewhat nearer the obstruction than was

possible for the slit, since in Fresnel's construction lines drawn from the ex-

posed wave front to the point of observation are not assumed to be parallel.

4-18 Fresnel laminar zones. In Fig. 4-8 the line W lies parallel to the

wave front of a plane wave, advancing from left to right. Consider the

excess pressure pF existing in a layer of air located along this line, given by

the equation

Vf = (p»)^cos2ir (4-9)

where (pm) F is the maximum value of

pF . The problem will be to compute

the total effect at a more distant

point a, due to all portions of the

wave front at W, the latter to be

considered as made up of an infinite

number of infinitesimal areas in the

nature of thin laminar strips running

perpendicular to the plane of the

paper. The effect at a, due to the

motion of a strip located at a height s above point 0, and of width ds, will

be proportional to the maximum value of the pressure (pm)F at W and

also to the width ds of the strip being considered. The contribution to

the instantaneous acoustic pressure at a, in terms of the wave equation,

may then be written

dpa <x (pm) F cos y (ct - r) ds
>

(4-10)

r being the distance between the infinitesimal strip and the point. (It

should be noted, from the form of this expression, that although variations

in the distance r are sufficient to affect the phase of arrival at point a, they

are not so great as to seriously affect the maximum value of the pressure
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due to any one strip, and consequently may be neglected. Otherwise there

would have to be a factor in the nature of an inverse function of r in the

proportionality. We are also taking no account of the so-called " obliq-

uity" factor.*)

If r is the perpendicular distance from the point to the plane of the wave
front, we see from the figure that

r = (rg + s2)
1

.

Expanding the right-hand side by the binomial theorem and retaining only

the first two terms (an approximation, therefore), we obtain

r = r» + £-- (4-11)

If this relation is introduced into Eq. (4-10), we have

dpa oc (pm) F cos -r\ ct ~
(
r° + 2~) ds

>

which may be rewritten

dpa « (pm) F cos y (ct ~ r°) ~\~\ ds ' (4-12)

If we now expand Eq. (4-12) as the cosine of the difference between two

angles, we have

dpa « (pm)F cos— (ct — r ) cos -— + sin— (ct — r ) sin— ds.
|_ A A7*o A AfoJ

It is this expression for dpa that must be integrated with respect to s over

the exposed portion of the wave front, if we are to compute the instantane-

ous total pressure effect at point a:

Pa = j dpa « (pm) F COS Y (Ct - r o) / COS ^^ ds
Xr

+ siny (ct ~ ro) / sin ^- ds (4-13)

At this point in the analysis a substitution is convenient. Let

and

/

cos r— ds = N cos a
Xr

7TS
sin t— ds = N sin a.

Ar

(4-14)

If the above relations are introduced into Eq. (4-13), the latter may be

rewritten in the form

* See Jenkins and White, Fundamentals of Optics, 1950, p. 348.
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pa « N(pm)F cos y (ct - r ) - a I (4-15)

In our examination of diffraction patterns of the "edge" type, we shall be

primarily concerned with the effect of cutting out certain portions of the

wave front at W in Fig. 4-8. This means that we shall be interested in

the integrals appearing in Eqs. (4-14), since they are directly related to the

quantityN in Eq. (4-15) . The maximum value of pa is clearly proportional

to N. Squaring both sides of Eqs. (4-14) and adding, we find that

^(Jcosg^V (/sing ds
)

2

. (4-16)

Again assuming the intensity to be proportional to the square of the

maximum pressure pm , the intensity at point a will be proportional to N2
.

The integrals on the right-hand side of Eq. (4-16) enable us to compute iV2
,

once the proper limits for s are specified, for any particular exposure of the

wave front.

4-19 The Fresnel integrals. The spiral of Cornu. In order to put the

integrals in Eq. (4-16) in a form having more general usefulness, it is usual

to change the variable from s to v, where

3=^/1%. (4-17)

Equation (4-16) then becomes

m = *. [(fcos 5? dv
J
+

(

J"
sinf dvj] (4-18)

The integrals in the form given by Eq. (4-18) are called Fresnel's integrals.

(Note that the coefficient Xr /2 is not a function of the degree of exposure

of the surface of the wave front, so that in the new form N2 will still be

proportional to the sum of the squares of the two integrals.) The particular

value of each of the Fresnel integrals, for the limits to v, have been com-

puted for various numerical values of the parameter v (see Appendix III).

A graphical plot of the results is known as Cornu's spiral and is given in

Fig. 4-9. In this graph

P ^ a 1x = I cos— av

and [
(4-19)

y =
f

sin— dv.

Points on the curve correspond to specific values of x and y, as given by

Eqs. (4-19), using in each case a particular numerical value of the limit, v.
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There are two symmetrical parts to the spiral, corresponding to plus and
minus signs for v (and hence for the coordinate s on the wave front). For
very large values of ±v (or ±s) the curve approaches the points ex and e2
in the diagram, as limiting positions of points x, y. The numerical values
of the abscissas and ordinates for these points are 0.5 in each case. The
last parts of the spiral are not shown, since v must be infinite for the curve
to reach these points.

The Cornu spiral may be used to predict the intensity at a further
point, due to the exposure of any given portion of the wave front. As
shown in the preceding section, the intensity I oc N2 = (x2 + y

2
), where

x and y represent the two Fresnel integrals. Suppose that a portion of the
wave front is exposed, extending from the coordinate sx to the coordinate s2.

The corresponding values of v will be vi and v2 , the exact relationship be-
tween the v's and the s'a being stated in Eq. (4-17). We may then write

X = I cos— dv

y
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Fig. 4-9. The spiral of Cornu.
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and

= I sin — dv.

These integrals may be rewritten

and

X
=J

eosY dv
-J

y = I Siny^-I SI

7rt>
2 ,^

cos— ay

irtr
sin— dv.

(4-20)

From Eqs. (4-20) it should be clear, since

N2 = (3.2 _|_^ -that the correct magnitude

of JV, on the graph of the Cornu spiral, will

be given by the length of a line drawn be-

tween the points Xiyi and x2y2-

4-20 Use of the Cornu spiral to deter-

mine the diffraction pattern for a straight

edge. A single application will serve to

show the general usefulness of the Cornu

spiral . It may be used in a number of ways

and several of the problems at the end of

the chapter are illustrative.

Let us suppose, as in Fig. 4-10a, that a

portion of a very large wave front is com-

pletely blocked off by a plate opaque to

sound, extending from point to a point

very far down in the negative ^/-direction.

The integrals in Eq. (4-16), leading to the

intensity at point a, will then involve for s

the limits of virtually to oo , and the limits

for the Fresnel integrals, in terms of v, will

be the same. The plot of the point x, y on

the Cornu spiral will therefore be point

ei. Since iV2 = (x2 + y
2
), the intensity at

point a in Fig. 4-10a will be proportional

to the square of the distance from the

origin to point a on the Cornu spiral, i.e.,

Oei.

For points above and below point a

in Fig. 4-10a, the geometrical equivalents
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given in Fig. 4-10b and 4-10c may be used. As may be seen, moving
the point down, as far as exposure of wave front is concerned, is

equivalent to moving the obstruction up, and vice versa. A comparison
of Fig. 4-10a and Fig. 4-10b will show that as the observation point is

moved down to a' (and therefore into the geometrical shadow), the length
of wave front exposed will decrease by the amount s', as compared with
position a, directly opposite the edge of the obstruction. On the Cornu
spiral the relative intensity will be indicated as the square of the length of
the line drawn from point ex to a point such as e z on the curve, correspond-
ing to the particular value of s = s' indicated in Fig. 4-10b. As the point a'
is moved farther down into the geometrical shadow, the line e& z will rotate
around ei as a pivot, the point e 3 moving along the curve in a direction away
from the origin. The intensity will therefore approach zero asymptoti-
cally, since the radius of the spiral turns gradually decreases.

For positions on the plane of observation above a in Fig. 4-10a the equiva-
lent geometry is that' of Fig. 4-10c. It is easy to show that the intensity
due to contributions from portions of the wave front both above and below
the line Oa in Fig. 4-10a is correctly indicated by the length of a straight
line drawn between points on either half of the spiral, the values for v that
are used corresponding"to the two values of s on the wave front. The line
eie 4 is such a line, corresponding to the situation at point a" in Fig. 4-10a.
The wave front exposure for this point includes all of the upper half and
part of the lower. As the observation point is moved away from the
geometrical shadow the line on the spiral wiU revolve about ex as a pivot,
the point e 4 moving along the spiral towards e2 . The length of the line
eie 4 will undergo a series of oscillations. At a considerable distance from
the edge of the obstruction, the length will approach that of the line exe2,

corresponding to total exposure of the wave front.

It should be pointed out that the innermost turns of the spiral, in the
neighborhood of ex and e2 , correspond only very crudely to the geometry
of Fig. 4-8. This is because in this analysis we have neglected the so-
called "obliquity factor," referred to earlier, which is associated with the
inclination of the line aO' to the plane of the wave front, and also because
of other approximations such as the effect of an increase in the distance r
on the intensity, mentioned in Section 4-18. However, the shapes of the
last turns of the spiral do not affect the total intensity as markedly as do
those of the first few turns, and the error is thus not too serious.

4-21 Direct graph of intensity. To obtain numerical results for the
problem discussed in the previous section it is necessary to know the wave-
length and the distance r , since these quantities enter into the relationship
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N (oc Intensity)

4.0 meters

Inside geometrical

shadow
Outside geometrical

shadow

Fig. 4-11. Approximate variation in sound intensity inside and outside the geo-

metrical shadow of an obstructing plate for a wavelength of j? meter, as observed along a

plane at a distance of 4 meters from the plate (r = 4 m).

between s and v. To make this clear, let us suppose that X = i meter and

that r = 4 meters. For the point a in Fig. 4-10a the limits for s will

then be virtually to oo
}
and likewise for v. The intensity, from the Cornu

spiral, will be proportional to (Oei)
2 or 0.5. For a point a', 0.5 meter below

a in Fig. 4-10a, the limits for s will be 0.5 to oo; therefore for v they are

from 1.0 to oo (Eq. 4-17) . (Note that s will have the units of length chosen

for X and r ; v is dimensionless.) For these limits the length of the chord on

the spiral is 0.29and theintensity is therefore proportional to (0.29)
2 = 0.084.

(The length of the chord may be conveniently found by making use of the x-

and ^/-coordinates of its end points, as read from the table for the Fresnel

integrals, Appendix III.) In this manner the complete diffraction pattern

may be drawn for all points along the plane of observation.

Figure 4-11 is a graph showing relative intensities inside and outside

the shadow for X = \ meter and r = 4 meters. Within the shadow there

will be appreciable sound intensities for a distance of about one meter.

Moving away from the geometrical shadow, one finds a series of maxi-

mum and minimum points, finally leveling off to a steady intensity at a

distance of approximately 3 meters from the edge.

4-22 The shape of the diffraction pattern, as a function of X. One of the

most important features of a diffraction pattern of the edge type, as in the

case of the slit, is its degree of " spread" or "compression." From Eq.

(4-17) the limits for s, for a given value of r , are proportional to Vx.
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Since moving downward into the geometrical shadow is equivalent to a

corresponding rise in the position of the limit, s, on the wave front, a cer-

tain value of the intensity, as read from the Cornu spiral, will appear

close to the edge of the obstruction when X is small and far away from

the edge when X is large. In other words, the pattern will be highly

compressed for the short wavelengths and spread out for the long wave-

lengths.

The conclusions reached above show that the bending of sound waves

around the edges of obstructions is a prominent feature of the wave propa-

gation. The bending is highly selective as regards frequency, because of

the manner in which the wavelength enters into the problem. Let us

consider the intensity along a vertical plane at a distance r = 4 meters

from the obstructing plate. For a frequency of 650 cycles-sec
-1 the inten-

sity will drop by approximately 50% if one moves a distance s
f

of 60 cm
from point a (Fig. 4-10a) into the geometrical shadow. On the other

hand, with a frequency of 2600 cycles-sec
-1

this same drop in intensity will

take place within a distance of only 30 cm. With a complex sound wave,

such as that associated with music, there will be a kind of dispersion behind

an obstruction. For a listener sitting well within the "shadow," the bass

portion of the music will predominate over the treble. This effect is often

observed when music is being played in an adjacent room, with a partially

intervening partition.

4-23 Diffraction of waves around obstacles of various contours lying in

a field of sound. The discussions above on the interference patterns asso-

ciated with apertures and edges will suffice to give a good deal of qualitative

insight into other diffraction problems of more complicated geometry. In

general, the introduction of some obstacle into the path of plane or spheri-

cal sound waves will disturb the conditions existent before such introduc-

tion. For instance, it is shown in books on optics that there is a bright

spot directly behind a disk held in the path of a beam of parallel light.

The simple construction used to demonstrate the truth of this prediction

may be applied with equal validity to either sound or light waves. At
other points behind the disk, not lying on its axis, there may be shown to

exist regions of maximum and minimum acoustic pressure, very similar in

distribution to the patterns for a circular aperture. On the other side of

the disk there will appear a somewhat similar pattern due to energy reflected

from the disk. All of these patterns are to be expected from the previous

analyses in this chapter.

Theoretical computations have been made by Rayleigh, Schwarz, Stenzel,

and others on the extent of the disturbance of the sound field in the neigh-
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borhood of obstructions having Plane wave advancing

a few simple shapes, such as m this direc,,on

disks, spheres, cylinders, etc.

As one would expect, the math-

ematics is complicated. Ex-

perimental measurements by

Wiener and others have con-

firmed many of the theoretical

results. Microphones and
probes of various shapes may be

assumed to approximate some

such simple geometry and it is

important to understand their

effect upon the sound field. The

sphere, it might be mentioned,

is a diffracting obstacle of espe-

cial interest, since the human
head is roughly spherical in

shape and the diffracting prop-

erties of the head are of interest

whenever listening is involved.

The pressure distribution on the

surface of such an obstacle is of concern, as well as the pressure distribution

in the surrounding medium.

Figure 4-12 is a polar plot, adapted from Wiener, * which illustrates how

the excess pressure in a plane sound wave is affected by the presence of a

sphere whose radius is of the order of the wavelength. For the head, this

corresponds to a frequency of about 2000 cycles-sec
-1

. The radial distance

from the pole to the curve is proportional to the ratio of the sound pressure

at various points on the surface of the sphere to that existing in the wave

before the introduction of the sphere (the ratio in this case is plotted in

decibels). The angles are measured with respect to the direction from

which the wave is coming. The circle labeled decibels crosses the curve

not far from the 90° position. Therefore at this position the sound pressure

will be about that in the undisturbed wave and if one is facing the oncoming

wave, the ears will lie, effectively, in the undisturbed field. For other

points on the head this is not so.

A problem of considerable theoretical and also of practical interest is

the " scattering" of longitudinal waves by a large array of small particles

(small compared with the wavelength). Rayleigh has shown that the

* Jour. Acous. Soc. of Amer., 19, 446 (1947).

Fig. 4-12.

180"

(After Wiener)
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intensity of the scattered wave
(essentially a diffraction process)

varies, for any one such particle, as

the fourth power of the frequency.

This effect is of particular interest

in the propagation of waves through

sea water, where there may be air

bubbles and suspended solid parti-

cles . The dissipation of useful energy

in this manner is of much impor-

tance in undersea signaling.

4-24 Diffraction effects for an
acoustic piston set in a circular plate

of finite size. As a final example

of a diffraction pattern of practical

importance in sound reproducing

equipment, let us consider the follow-

ing situation. Suppose that a plane

wave strikes a plate having a circu-

lar hole, but that the size of the plate

is insufficient to entirely cut off the

advancing wave at the outer edges.

One would then expect two overlap-

ping diffraction patterns, one from
the aperture, the other from the energy diffracting around the edges of the

plate. In the practical arrangement to be described, somewhat the same
sort of thing will occur.

A loudspeaker unit (effectively an acoustic piston) is mounted at the

center of a plate whose diameter is several times that of the speaker cone.

Let us assume the diameter of the cone to be much less than X, but the

diameter of the plate to be at least as great as X. The back of the speaker
unit is completely enclosed, to eliminate double source complications.

Instead of the simple spherical divergence to be expected from what
amounts to an aperture small in size compared with X, an interference

pattern will be observed in front of the plate. This pattern results when
the wave disturbance reaches the boundary of the plate, since the edge
becomes, by diffraction principles, a new source of waves. As indicated in

Fig. 4-13, the combination of this new wave train with the primary waves
set up at the cone gives rise to interference effects. The ensuing irregu-

larities in intensity distribution are often of practical interest in sound
equipment and in laboratory measurements.

Back-enclosed

acoustic piston

Fig. 4-13. Diffraction pattern in front
of an acoustic piston surrounded by a baffle

of limited dimensions.
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If the back of the cone is not enclosed, the radiation from the rear be-

comes important because additional interference effects occur due to the

double source action. This problem involves the general behavior of the

baffle, which was discussed qualitatively in the preceding chapter. When

we consider the general problems of practical loudspeaker design in Chap-

ter 11, a quantitative discussion will be included.

4-25 General conclusions on diffraction. It should now be quite clear

that diffraction is a complicated matter. Only a few of the cases, of par-

ticular interest in acoustics, have been presented. For the treatment of

other problems of diffraction, reference should be made to a book on optics.

For many practical problems the analytical work is too difficult for even

an approximate solution and in these cases one must explore the field of

sound with experimental probes. This is a laborious process and is sub-

ject to much error, due among other things to the diffracting properties of

the probe itself. More will be said on this point in Chapter 10.

PROBLEMS

1. Consider the single slit pattern.

Draw vector diagrams to show the total

pressure pm for a value of d (see Fig. 4-1)

equal to (a) A/4, (b) A/2, (c) A, and

(d) 3A/2.

2. Consider a point a (Fig. 4-1) such

that d = A/4, (a) Suppose now that the

slit width is doubled, the wavelength and

the position of point a remaining fixed.

Compare the new pressure pm at a with

the original value; also the new intensity

with the original value, (b) Repeat part

(a), assuming the slit width to be increased

by a factor of 10 (the width is still small

compared with the distance from the slit

to the point a).

3. Repeat problem 2, assuming, how-
ever, the slit width to remain fixed at the

original value and the wavelength to be

(a) halved, and (b) reduced to 0.1 of its

original value.

4. Plot a curve on rectangular axes to

show the relation between the maximum
pressure pm and the angle @ for the case

where (a) A = 6, (b) A = 6/2.

5. Draw a polar graph of the relation

between the intensity / (oc (pm)
2
) and the

angle /3, at a fixed distance from a slit

whose width b is equal to the wavelength.

6. For the circular hole pattern, find

the value of /3 for the appearance of the

second minimum, if the wavelength is 2.0

cm and if the area of the hole is 75 cm2
.

7. Consider the distribution of pres-

sures over a plane of observation 2 meters

from a plate containing a circular hole

through which sound waves are passing.

The ratio of wavelength to hole diameter

is 0.1. Find the radius of the circles rep-

resenting the first three loci of zero pres-

sure.

8. A loudspeaker cone of diameter 12

inches is surrounded by an infinite plane

baffle. Plot the intensity / as a function

of the angle /3 (for a fixed radial distance)

when the frequency of vibration is (a) 50

cycles-sec
-1

,
(b) 5000 cycles-sec

-1
. Con-

sider the cone to move as a unit in both

cases.

9. A plane sound wave in air, of

frequency 10,000 cycles-sec
-1

, strikes a

paling fence with normal incidence. The
width of the boards may be considered

small compared with the wavelength. The
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spacing between the boards is 5 inches.

For the reflected energy, find the angle to

the normal for the appearance of the first

order and second order spectrums, assum-
ing the fence to act like an optical diffrac-

tion grating of the reflecting type.

10. Show that a differential distance

measured along the Cornu spiral is equal

to dv. (Since this is so, any point on the

spiral for the limits zero to v may be
located immediately by measuring off the

value of v along the spiral curve, beginning

at the origin.)

11. (a) Show that for a given value of

ro and of X, the slope at any point on the

Cornu spiral is equal to the tangent of the

phase angle between the contribution at a
(Fig. 4-8) from the point s on the wave
front and the contribution from the point

directly opposite a. (b) What is the

significance of the slope of a straight line

connecting two points on the Cornu
spiral?

12. A point a lies directly opposite the

center of a slit through which are passing

plane waves. The distance from the

point a to the upper or lower edge of the

slit is greater than the distance to the mid-
point of the slit by just X/2. (a) On the
graph of a Cornu spiral, draw a line whose
length is proportional to pm at point a.

(b) Read off the values of the Fresnel
integrals for the end points of this line.

(c) Making use of the table of Appendix
III, find the corresponding values of v.

(d) If X = 1.0 cm and r = 10 m, compute
the width of the slit from v. Check the
result from the direct geometry of the
figure.

13. (a) A point Oi is directly opposite

the lower edge of a slit 20 cm wide and is

100 cm distant from it. Plane waves of a
frequency of 10,000 cycles-sec-1 are passing
through the slit. Using the proper limits

for the variable v, find the values of the
appropriate Fresnel integrals (Appendix
III) . (b) In a similar way, find the values
of the Fresnel integrals for a point a^

directly opposite the mid-point of the slit.

Then determine the ratio of the maximum
pressure at the first point to that at the
second point.

14. Redraw the abscissa scale for Fig.

4-11, assuming a wavelength of TV m.



CHAPTER 5

ACOUSTIC IMPEDANCE. BEHAVIOR OF HORNS

5-1 The principle of analogy. In Chapter 1 some use was made of the

similarity between the differential equation for an electrical circuit and

for the motion of a particle. Since the differential equations were the

same in both cases, the form of the two solutions could also be assumed

identical. This is only one problem among many where the solutions to

circuit problems can be carried over into a different field, such as mechanics.

In probably no other branch of engineering or physics has the mathemati-

cal technique for handling problems been developed to such a high point

as in the field of electrical circuits. Therefore in showing that a problem

in another field is mathematically equivalent to some well-known circuit

problem, one is well on the road to a solution. Great care must be taken,

however, to establish clearly all the details of the analogy, so as to correctly

interpret the new solutions.

5-2 Types of analogies. It is often possible to set up an analogy in

more than one way, even between the same two sets of phenomena.* In

this book two general types of analogy will be found helpful. In the first,

already made use of in connection with particle motion, a mechanical

system is broken up into inertial, elastic, and dissipative components.

Sometimes the inertial components are the solid masses and the elastic

components are the springs of ordinary mechanics; sometimes the system

comprises enclosed volumes of air, with their associated mass and elastic-

ity. Frequently a system made up of both solid and air elements must

be considered. Such systems may be said to possess mechanical impedance

whose behavior under the action of impressed forces of various kinds may
be compared to the part played by electrical impedances in electrical

circuits. In the electrical case, such mechanical impedances may be

"lumped" (ordinary inductors, capacitors, and resistors used at low

electrical frequencies have impedances of this type). On the other hand,

as in the case of air conduits, the impedance may be " distributed," in the

sense in which the term is used for electrical transmission lines.

The usual procedure with the above type of analogy is to set up the

differential equations for the dynamics of the system or for some part of it.

These equations are then compared with those for well-known electrical

circuits whose solutions have already been studied. In this comparison,

two points of view may be taken. The most obvious one is to draw the

* See Morse, Vibration and Sound, McGraw-Hill, 1948, for a discussion of various

types of analogies useful in acoustics.

99
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analogy between velocity and current and between force and potential dif-

ference. This was the approach in Chapter 1, in connection with particle

vibrations. It is also possible, by rewriting the differential equations in a

somewhat altered mathematical form, to show a different analogy, where

velocity is compared with potential difference and force with current. This

latter cross-comparison has distinct advantages wherever the mechanical

system is a complicated one. The chief of these advantages is that the

equations for a mechanical system arranged in a physical series (or "tan-

dem" manner) have then the same form as those for a series electrical

circuit. Similarly, a parallel mechanical arrangement corresponds to a

parallel electrical circuit. However, from the first point of view, which we
shall use in this book, a series arrangement for a mechanical system must be

compared to a parallel electrical circuit and vice versa, and this can be an an-

noying source of confusion. Despite this disadvantage, we shall retain this

point of view, since,the mathematics is simpler to set up and since, for the

most part, we shall be dealing with simple systems, having few components.

We shall presently consider certain aspects of the behavior of the

Helmholtz resonator as an example of an analogy of the above type.

Later we shall refer to " acoustic filters" of the type studied by Stewart

and others. These filters are made up of air conduits of various shapes

and sizes, with acoustic frequency characteristics closely similar to those

of corresponding electrical filters. The various parts of these conduits

possess mechanical impedance, in the sense used above, and the electrical

analog may be fully represented as an equivalent circuit containing induc-

tors, capacitors, and resistors.

The second type of analogy, of a somewhat more restricted nature and

not to be confused with that discussed above, is quite useful in problems

connected with the radiation and transmission of sound. In the develop-

ment of this analogy we shall not be concerned with the impedance of

some mechanical system or its parts, but with what is called the specific

acoustic impedance * at a point in the medium through which sound waves

are passing. This quantity is also referred to as specific radiation imped-

ance. It will presently be defined and its general usefulness will appear

when it is applied in some specific problems.

Problems often arise in which it is convenient to make use of both types

of analogy, in which case it is important to keep the definitions and proce-

dures for each clearly in mind. The analysis of the Helmholtz resonator

* See Morse, pp. 236-7, for definitions of three different kinds of acoustic im-

pedance. In this chapter the term acoustic impedance will, unless otherwise quali-

fied, refer to specific acoustic impedance.



5-4] COMPLEX NOTATION AS APPLIED TO ELECTRICAL CIRCUITS 101

and certain features of the radiation of sound by loudspeakers and horns

are cases in point.

5-3 Sound radiation and acoustic impedance. The radiation of energy

from sources of sound has been discussed in the previous chapter from the

standpoint of the field or wave equations. There is no other way to

obtain a point-to-point description of the field of sound. As has been seen,

it may be very difficult to apply the equations to practical problems,

largely because of the complexities of the boundary conditions. Many

approximations must be made to obtain any solutions at all.

If one is interested in the over-all radiation of real sound energy from the

source there is another approach, through the concept of acoustic impedance.

The results of this analysis are illuminating in connection with the be-

havior of certain widely used sources of sound and will be applied to some

of these sources later in the chapter. Other applications of the idea of

acoustic impedance will appear in later chapters.

As a preliminary to a definition and discussion of acoustic impedance,

it is necessary to summarize the essential features of the complex notation

used in a.c. circuit analysis.

5-4 Elements of complex notation as applied to electrical circuits. A
complex number, i.e., a real plus an imaginary quantity, may be represented

in several ways:

« + jo,

M(cos + jsin 0),

Imaginary

(5-1)

a=Mcos0 Real

Fig. 5-1. Polar representa-

tion of a complex quantity.

The first of these expressions is the definition

of a complex number, j being equal to v — 1.

The second form is based upon a plot of a

complex number as a point in the so-called

complex plane (Fig. 5-1). The modulus, M,
has a magnitudewhich is the distance from the

origin to the point representing the complex

quantity, and is the angle between this radius vector and the horizontal real

axis. The whole expression can be seen to be equivalent, geometrically,

to a + jb. The modulus M can also be written Va2
-f- b2

. The third

(polar) form can be shown to be equivalent to the second form by expand-

ing cos 0, sin 0, and e
jd into their respective equivalent power series.

To demonstrate the advantages of the use of complexes in a.c. circuit

theory, we shall return to the differential equation for an L-R-C circuit

(Eq. (1-29)). Instead of writing the impressed potential as Em cos (ut),

let us use the complex expression Eme
iut

, so that
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L -^ + Ri + ^ / idt = Eme 7
'"

1 = Em[cos ut + j sin at]. (5-2)

Since the right-hand side of this equation is complex, the expression on
the left must be complex; and since all coefficients are real, the solution

for the current i must be a complex expression. If a solution of the

form Ae ]

'

wt
is assumed and substituted into the differential equation, the

latter will be satisfied, provided that the coefficient A is equal to the com-
plex expression

A = J5= — (5-3)

R
+i»

L
-ic)

Therefore the current (the steady state current, assuming that the transient

part of the solution has died away) is

Er"
:*". (5-4)

R+3[uL{*-%
This may be rewritten, using the polar equivalent for a complex number

Emi=
jfe«*"-= I

E'" —~ ^~", (5- 5)

where tan 6 =
coC

R

If the usual completely real expression for the current in such an a.c.

circuit is desired, it may be extracted from Eq. (5-5) by using only the

real part of es(-
wt ~ e)

}
that is,

rp
s

cos M - 0). (5-6)creai / — v

The real part of Eq. (5-5) represents the real current in the circuit, just as

the real part of Emz
i<Jit represents the actual applied potential. It is to be

noted also that the electrical impedance of the circuit (that quantity which

gives the current when divided into the potential difference) may be written

either as a complex or as a real number. From Eq. (5-4),
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or, from Eq. (5-6),

z
=

V

fl2 +

(

wL - i)'

•

(5_8)

The real form for the impedance (Eq. (5-8)), is simply the modulus of the

complex form, and the magnitudes of the real and imaginary parts of z

in Eq. (5-7) are respectively the resistance R and the reactance X of the

circuit. The phase angle 6 between current and applied potential is arctan

b/a = arctan X/R.
For the solution of circuit problems, there are many advantages in retain-

ing the complex form of e, i, and z. For the acoustical problems at hand

the main advantage will be in the more ready determination of the nature

and extent of the power radiated by a source of sound. In an electrical

a.c. circuit it is well known that the only real power delivered is due to the

presence of resistance. (The average value of the real power may be

written either as EimsIIins cos 6, or i?ms#.) For acoustical problems a

quantity in the field of sound which is analogous in many ways to complex

electrical impedance, . z, will be defined. The nature of this acoustic

impedance, whether it is real, imaginary, or a combination of both, will be

closely tied up with the nature of the acoustic energy flow in the region

where this impedance is computed. Moreover, by the use of the complex

form for the instantaneous excess pressure p, the particle velocity £, and

other field parameters, useful phase relationships may be quickly obtained.

5-5 Specific acoustic impedance. Specific acoustic impedance, zs , at

a point in a field of sound is defined as

zs = ?> (5-9)

where p and £ are the instantaneous excess pressure and particle velocity,

respectively. For a single sound frequency, p and £ are sinusoidal functions

of the time I but they are not necessarily in phase for all types of waves.

Therefore specific acoustic impedance, pressure, and particle velocity are

related exactly as are electrical impedance, potential difference, and

current in an a.c. circuit. The dimensions of the acoustical quantities, it

should be noted, are different from those of the electrical ones, although

there are some similarities. The most important distinction is that elec-

trical impedance, defined as e/i, exists between two points in the current-

carrying circuit, whereas the specific acoustic impedance is a point property.

The acoustic impedance, as here discussed, is completely defined as soon

as the coordinates of a point and the corresponding values of p and £are

specified.
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The analogy carries further than Eq. (5-9) . Just as the product ei

represents instantaneous electrical power, so the product p£ represents the

instantaneous acoustical power at the point in question. However, the

power ei is total power delivered to the circuit across which the p.d. exists,

whereas the acoustical power p£, since it involves the pressure, is the energy

flow per unit area and per unit time. Nevertheless, the analogy is close

enough to be quite useful. As mentioned earlier, the exact limitations of

any analogy must be recognized.

5-6 Specific acoustic impedance for plane waves. If the specific acous-

tic impedance at any point in the path of plane waves is computed, the

result is particularly simple. We shall make use of the velocity potential <£,

which was first introduced in Chapter 3 in connection with three-dimen-

sional waves. It is perfectly correct to use this function also for plane

waves, since they are simply a special case of three-dimensional waves in

cartesian coordinates. The first of the equations (3-13) in Chapter 3
becomes, with 3> a function of x only,

The solution, which represents $ as a function of x and t for a wave travel-

ing in the -\-x direction, may then be written

$ = A cos ~(ct -x). (5-11)

As is to be expected, the coefficient A of the cosine expression is a constant

with no inverse function of the space coordinate, since in the case of plane

waves the maximum values of p, s, etc., all derivable from the function $,

do not decrease with the distance from the source. For our present

purposes we shall write the periodic function on the right of Eq. (5-11) in

the complex form,

$ = AejHct-x\ (5-12)

The quantity k here replaces the ratio 2ir/\. (The real part of Eq. (5-12)

is identical with (5-11).)

It is now a simple matter, by means of the derivative relationship, to

obtain the appropriate equation for the instantaneous excess pressure and

the particle velocity. Making use of p = p —, we find that
dt

p = jPokcAe^ ct-x\ (5-13)



Wo = 7 = .^^(c^-x) = P<*. (5
~15)
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Also, for the particle velocity,

| = - — = jkAe^ci~x\ (5-14)
ox

Therefore the specific acoustic impedance (zs) for plane waves in free space,

at any point along the direction of propagation, becomes

p _ jPokcAe
]Hct-x) _

£
~ jkAe J

(This result could have been obtained directly from parts (b) and (e) of

Eq. (2-19), without use of the function $ and without using the complex

form. The present method of determining zs , however, is fundamental to

the following discussion of the more complicated cases, and is used here

for the sake of generality.)

The simple product p c just obtained has very nearly the numerical

value of 42 gm-cm~2-sec
_1

(in cgs units) under standard conditions of

temperature and pressure in free air (0°C, 760 mm Hg). The equivalent

number in mks units is 420 kgm-m-2-sec
_1

(these values are slightly lower

at temperatures in the neighborhood of 20°C). The specific acoustic

impedance for plane waves in free space is thus a constant, independent

of x and t and also of the parameters characteristic of any particular dis-

turbance, such as frequency, particle amplitude, maximum excess pressure,

and all the other related quantities. Thinking of (zs)o in terms of the elec-

trical analogy, it is real and therefore corresponds to an electrical resistance,

with all that this implies. In an a.c. circuit the average power delivered

may be computed as PimsR, where R is the real part only in the complex

quantity representing the total circuit impedance. In the case of plane

waves, zs is all real, therefore the average acoustical power (per unit area)

is (£rmS)
2
PoC- (Compare Eq. (2-29c).)

All acoustical energy per unit area that arrives in the plane of the wave

front passes on in the direction of wave propagation, away from the source,

with no fraction " reflected" back towards the source. This would not be

true if there were a reactive (i.e., imaginary) component of the specific

acoustic impedance. In the latter case, some energy would periodically

flow in the —x direction, just as in an electrical circuit instantaneous energy

fed into an inductor or into a capacitor would presently return to the

generator.

It should be pointed out that Eqs. (5-13) and (5-14) give a ready indica-

tion as to phase. Due to differentiation, both expressions have -f-j in

the coefficient. The exponential e^ct~x)
is a complex number which may

be represented in the complex plane by a vector and an angle. The

presence of the + j before the exponential has the effect of rotating this
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vector 90° in a counterclockwise direction. (This may be readily verified

by writing e 7

'

k(ct~x) in the form a + jb, multiplying by + j, and then inter-

preting the result graphically.) From Eqs. (5-13) and (5-14) it is seen

that p and £ are in phase with each other, but are 90° ahead of the variation

in $>. (It should be noted that a coefficient of — j has the effect of rotating

the vector in a clockwisedirection and therefore signifies a lag relative to <£.)

5-7 Analogous acoustic impedance. Besides the concept of specific

acoustic impedance, there is another useful quantity, the acoustic imped-

ance za for an area, S. Following the terminology of Morse, we shall call

za the analogous acoustic impedance* This is defined as the ratio of the

instantaneous excess pressure to the so-called "volume current," S% = X.

Note that since za = z s/S, the analogous impedance is less than the specific

impedance if S is greater than unity. The definition of za is designed to be

in line with power considerations. When the impedance of an electrical

circuit is decreased, keeping the applied potential difference constant, the

current will increase and therefore so will the power. In the acoustical

case, more energy will flow per second through a large area than through a

small area. Hence the analogous impedance is an inverse function of the

area. Since for plane waves the instantaneous power per unit area is

(|)
2
(zs)o, the power U for a total area S may be written in terms of the vol-

ume current X and the analogous impedance (za)o, as

u = say(z s) Q = (xy(za)o. (5-i6)

5-8 Specific acoustic impedance for spherical waves. For spherical

waves, the velocity potential <£ is an inverse function of the distance r from

the pole. Rewriting Eq. (3-16), for a sinusoidal wave in the complex

form,

$ = — e
J[Hct-r)+a] (5-17)

we find that in this case

p = Po^ = i^os
(5
_18)

and

1
= - S =

(r + jk
) 7

<ma-)+"]
- (5-19)

Therefore the specific acoustic impedance zs becomes

*- = j = »<* [t^w> + J T+¥?)' (5"20)

* Called analogous because the "volume current" S% is more similar to current

in an electrical circuit than is |. The quantity £ is comparable to current density.
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where the result has been written in the standard form for a complex num-

ber, a + jb. (Eq. (5-20) should be verified, making use of the usual

technique for handling complex quantities.) An inspection of Eq. (5-20)

will show that, unlike plane waves, there is an imaginary or reactive com-

ponent to Zs for spherical waves. The resistive component, the only part

involved in the radiation of real sound energy, is

k2r2

(zs)B = poc
1 + j^g- (5-21)

At the surface of a very small sphere, whose radius r «X, this may be

written in the simpler form

(zs)R ^ p ck2rl
(5-22)

r

This expression will be useful in the next section.

Before applying the results of the previous section, Eq. (5-20) merits some

discussion. An examination of the two terms in parentheses will show

that as the distance from the source becomes greater and greater, the term

containing j approaches zero and the first term approaches unity, so that

z s becomes p c for very large distances. This is to be expected, since for

distant points the wave front is effectively plane and the expression for zs

should approach that for plane waves. For nearer points, where the wave

front has greater curvature, the resistive component is smaller in compari-

son with the reactive component, and the latter becomes of considerable

importance. Near the source the power flow consists of two kinds. The

first is real power. The second, in the language of electrical circuits, is-

" wattless" power, involving energy which surges out from the source and

then back towards the source, without ever being radiated as sound waves.

Since the reactive part of z s is always positive, it is reasonable to say that it

is the mass or inertial property of the air that is involved, just as in Chapter

1 a particle was shown to have positive reactance due to its mass property.

One other comparison may be made. There are two kinds of electric

and magnetic fields around a circuit carrying alternating current, the

"induction" or " coulomb " fields, which are not involved in the radiation of

energy, and the "radiation" fields, which are responsible for any electro-

magnetic wave which may be set up and which carry all the energy associ-

ated with the wave. While there are no precise counterparts to these fields

in the acoustic case, there is a division of the energy into two parts, that

which is radiated and that which remains local.

5-9 The Helmholtz resonator. This well-known resonator furnishes a

good illustration for the application of the electrical analog. It is essen-

tially a rigid container, with an opening to the surrounding air. Figure 5-2
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shows, in cross section, two different

types of Helmholtz resonators. The
resonator in Fig. 5-2a has a simple

circular opening, while that in 5-2b has

a short attached cylindrical "neck."

If a tuning fork of a frequency to which

the cavity resonates is held near the

opening, the sound intensity in the

neighborhood will be greatly enhanced.

As a result of the following analy-

sis, it is possible to predict with fair

accuracy the natural frequency of the

resonator, subject to important restric-

tions placed upon the dimensions of

the resonator, as will be seen presently.

We shall make use of both types of

analogy discussed at the beginning

of this chapter. First we shall con-

sider the dynamics of a mechanical

system consisting entirely of enclosed air and having the properties of

mechanical reactance and resistance. The resonator with the attached

neck is simpler to analyze and what follows will apply to this type. As
shown in Fig. 5-2b, Vo represents the volume of the main cavity, while S
and I are the cross-sectional area and length, respectively, of the neck.

All dimensions are assumed small compared with the wavelength in air.

When a source of energy such as a vibrating tuning fork is held near the

opening, some of the energy radiated towards the resonator will set into

vibration a cylindrical "plug" of air within the neck, of volume IS. This

plug of air may be assumed to move as a unit (since I <& X) under the action

of the driving force due to the tuning fork, the elastic force on the inner

end of the plug (due to the compressibility of the air enclosed in the

volume Vo), and a force of dissipation. This last force is due mainly to the

radiation of sound energy and may be expressed in terms of acoustic radia-

tion impedance, as we shall soon see.

The equation for the motion of the air in the neck, treating the air plug

as a particle, is

Helmholtz resonator without
'

neck

(a)

( >"
l ~1 *

V "

)

r

Helmhoffz resonator with "neck"

(b)

Fig. 5-2.

(mass) (acceleration) = Fdriving + Fdlsslpatlve + Fe (5-23)

In this equation, the mass is that of the air plug, polS, where po is the average

undisturbed density of the air. Therefore we may write (mass) (accelera-
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tion) as polS£, using for acceleration the particle acceleration of the air at

the right-hand end of the plug.

To evaluate the dissipative term, use is made of the previous discussion

of the acoustic impedance. Neglecting friction in the neck, the main force

of dissipation is that associated with the radiated sound energy and there-

fore with the real part of the acoustic impedance at the right-hand end

of the plug of air. As the plug oscillates, its

right-hand face acts as a single source, giving . ^ .

rise to sound waves. The generating surface ]/f\ ^ djs
;r

may be considered a circular plane area. How- _
'_

ever, the diameter of this circle, like the other \
dimensions of the resonator, is small compared Fig. 5-3.

with X. As was seen in the previous chapter, a

surface of any shape whose dimensions are much less than X will give rise

to a wave shape which is spherical at a distance not far from the source,

due to diffraction effects. Assuming this to be the case, we may replace

the plane generating area S by a hemisphere whose radius r is that of the

neck itself (Fig. 5-3).*

Consider now the energy dissipated at the surface of this hemisphere.

Since the area S' of the hemisphere is greater than that of the cross section

of the plug of air (actually twice as great), the particle velocity £' at its

surface must be less than the velocity £ next to the plane end of the plug.

(This follows from the fact that both surfaces must be of equal " strength"

for complete physical equivalence.) The dissipative part of the acoustic

pressure at the surface of the hemisphere may be written

Pdis = (zsW = (za)RSt, (5-24)

where (za)it is the real part of the analogous acoustic impedance for the

whole surface of the hemisphere. The value of (za)n is

KZa)R
area 2-kt% 2tt

'

making use of the simpler expression for (zs)r, Eq. (5-22), since r is here

much less than X. Therefore

to = ^Vr = ^£|. (5-25)

(The product Sf

£
f may be replaced by Si because of the source equivalence.)

Having determined pais, we may now compute the total axial force on the

* Strictly speaking, if a hemispherical wave shape is assumed, a flange should

be mounted at the outer end of the neck to prevent back radiation.
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plug, Fdis, due to the dissipation, as the product of pd iS and the cross-

sectional area S of the plug of air

:

Fdis = - PaisS = -~ S% (5-26)

The velocity £ is that in the air next to the surface of the plug, or that of

the plug itself, since the two are identical.

The elastic force in Eq. (5-23) is a result of the springlike effect of the

air enclosed in the cavity upon the left-hand end of the plug of air. It is

important to note that since the diameter of the cavity is small compared
with X, no phase differences such as are associated with a wave exist

within the enclosure. Therefore, in effect, pressures are increased and de-

creased instantaneously throughout the volume Vo with the motion of the

air in the neck. The magnitude of the elastic force per unit area is

v v
' ^elastic = — ® T7~ = — PoC

2Ty, (5~27)

where (B and c have the usual meaning. But due to the motion of the

plug of air, v = S%. Therefore the total elastic force on the air in the neck
is

^elastic = SPelastic = ~ SpoC2— = - -A= £. (5-28)
V o V o

5-10 The resonance frequency. The complete differential equation for

the motion of the plug of air can now be written

PolbZ H ^r~ I + ~y~ % = Frne
]03t

,
(5-29)

where the driving force on the right, due to the arrival of wave energy

from the tuning fork, has been expressed as a complex quantity. This

equation is identical in mathematical form with Eq. (1-27). By com-
paring the coefficients in Eq. (5-29) with those in the earlier particle

equation and making use of Eq. (1-35), it may be verified that the fre-

quency for displacement resonance is given by

f~=hM(^-W)- (5
-30)

2tt \ Vol

If the damping factor is neglected, a more approximate but simpler expres-

sion for /res is obtained

:

f™ = h cM- (5
"31)

Experimentally, Eq. (5-30) agrees quite well with the lowest frequency to

which the Helmholtz resonator, with neck, will respond. Cavities of this
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type will also resonate to higher frequencies, not given by Eq. (5-30) or

Eq. (5-31). These resonances are associated with the existence of standing

waves within the cavity, occurring when the wavelength of the driving

frequency becomes less than the cavity diameter. In these cases the

assumptions made here are not valid and the results of the above analysis

do not apply.

The physical behavior of the Helmholtz resonator without a neck is

fundamentally no different from that of the one with the neck, with the

exception that the volume occupied by the plug of air is much less well-

defined. Instead of being cylindrical, the volume of air, moving more or

less as a unit, is somewhat lens-shaped. Because of the difficulty of deter-

mining the exact shape and size of this volume, the entire analysis is

necessarily only approximate. The loudspeaker enclosure, known as the

bass reflex or phase inverter type, is essentially a Helmholtz resonator. It

will be referred to again in Chapter 11. The natural resonance frequency

of such an enclosure may be determined most accurately by experiment.

5-11 The behavior of horns. Horn analysis, by any means, is a com-

plicated procedure and involves a great deal of mathematics, in the course

of which many approximations must be made in order to reach useful con-

clusions. It would hardly be worthwhile, in a book of this kind, to give

all the details of a complete analysis. Horns, however, are very familiar

objects. The simple megaphone or conical horn is used at football games,

and the use of horns of other shapes in connection with the indoor and out-

door amplification of music, etc., has become very common. What will be

attempted here, in order to explain the essential features of horn behavior,

is a brief outline of the subject from the standpoint of acoustic impedance,

pointing out the chief physical ideas involved, the fundamental mathe-

matical process, the necessary assumptions, and the important results that

may be obtained. Much of the material is based on an analysis by P. M.
Morse in his book Vibration and Sound, to which the reader is referred for

further details.

From one standpoint, a horn may be considered to be the outgrowth of

a cylindrical tube, in which the cross section of constant area has been

replaced by one whose area gradually increases. It so happens that com-

putations which are difficult for open horns become very simple when

applied to a closed cylindrical tube. While this latter case is trivial so far

as any practical application as a source of sound is concerned (for, being

closed, no sound can get out!), its analysis, as a preliminary problem, will

help to make clear the more complicated computations necessary for actual

horns.
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Acoustic
piston

x=0
I

x=l

jot

5-12 Radiation into a cylindrical tube closed at one end. The physical

arrangement of such a tube is shown in Fig. 5-4. At the left is an ideal

"acoustic piston" whose forward face is plane and perfectly rigid. It

fits closely into one end of the air-

filled cylindrical tube of length I, the

other end of which is closed with a

rigid flat plate. The piston is as-

sumed to be driven sinusoidally at

some fixed frequency / and with am-
plitude Qm . The dimensions of the

piston face in relation to X are of no
consequence in this problem. Plane

waves will be set up at the piston face and will be maintained down the
tube, friction at the tube walls being neglected.

The air displacements produced within the tube must satisfy the general

equation for plane waves,

£ = f(ct ± x), (5-32)

and, in addition, the boundary conditions at the piston face and at the

closed end must be met. Making use of the complex form, these boundary
conditions may be stated:

U=o m

Fig. 5-4. Acoustic piston radiating into

a closed cylinder.

©x=o = Qme*", (£>,=* = 0. (5-33)

A particular solution can easily be built up to satisfy both Eqs. (5-32)

and (5-33) . The following is consistent with Eq. (5-32)

:

£ = A sin — (ct + x) -A sin — (ct - x) .

A A
(5-34)

By expanding Eq. (5-34) as the sines of the sums and differences of angles,

we obtain

. . . 2irx 2-n-ct

£ = 2A sm— cos -r—
A A

(5-35)

or, expressing the cosine term in the complex form,

„ n A . 2irx . .

£ = 2A sm— e
Jwt

.

A
(5-36)

Equation (5-36) may be fitted to the boundary conditions by letting

A =- 0,

Hf)
and by adding a phase angle, wl/c, to the angle -r—

.
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(The solution will still be a function of (ct ± x), as required to satisfy the

differential wave equation.) The final form becomes

£ = - -%1T sin
[f

(* " 0] € 'w
- (5-37)

sin©
It may be verified that this satisfies the two essential boundary conditions

(1) that at x = the air motion be identical with that of the piston and

(2) that at x = I, £ and £ be zero, since the rigid plate at that end is always

stationary.

In order to see what type of force and energy transfer is involved at the

piston face, we may now compute the specific acoustic impedance at the

plane specified by z = 0. Using Eq. (2-19e) for plane waves, the acoustic

excess pressure at the piston face becomes

= poCwQm cot
c=0

fif} €*'. (5-38)

The particle velocity may be obtained by differentiating Eq. (5-37) with

respect to time:

= jaQme*". (5-39)
x=0

Therefore the specific acoustic impedance at the piston face is found to be

2 = -jPocootQ- (5-40)
x=0

From Eq. (5-40) it is seen that the air in the tube offers to the driving

piston, per unit area, an effective impedance which is always imaginary

and therefore in the nature of an electrical reactance. For low frequencies,

where the cotangent function is positive, z s is negative, so that the air acts

like a simple spring, or like an electrical capacitance, as might be expected.

At higher frequencies, the value of z s goes through a series of oscillations,

being alternately positive and negative as the frequency is raised indefi-

nitely, and hence showing the acoustic impedance to be alternately induc-

tive and capacitive. The magnitude of the reactance alternates between

zero and infinity. These extreme limits will not obtain in any actual tube,

where there will always be some dissipative force of friction, but assuming

any such factor to be small, there will be certain frequencies for which

very large motions will be imparted to the air and others for which such

motions will be very small. This periodic feature of the behavior of the

air in the tube is closely connected with the various standing wave patterns

to be expected with a column of air whose length is comparable to or longer
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than the wavelength. (Standing wave patterns will be studied further in

Chapter 7.) In general, whenever z s turns out to be a periodic function of

the frequency, as will be true in certain cases for horns, standing wave

phenomena will be implied.

5-13 Force on the piston. Total radiation impedance. Before leaving

this problem, it should be pointed out that the total force F on the piston

due to the air load is Sp, where S is the area of the piston and p is the

acoustic pressure given by Eq. (5-38). Also, the total effective mechanical

impedance (zm)air, added to whatever mechanical impedance the piston

structure itself may have, is

(2-)ait = (£
=

jjlfc

= Sz-
= - jSpec cot

(t)-
(5_4l)

When we come to discuss actual sound radiators whose generating surfaces

approximate that of an ideal acoustic piston, it will be the magnitude and

nature of this mechanical air-load impedance which will determine the

speaker's effectiveness as a source of sound. This air-load impedance is

often called the total radaition impedance offered to the sound source. Note

that (2TO)air equals zs multiplied by the area, whereas the analogous imped-

ance za equals zs divided by area. The analogous impedance za is useful

in connection with energy flow in the medium. The mechanical impedance

(£m)air is a measure of the reaction on the source due to the radiation.

5-14 Tube, open at one end. Once the cylindrical tube of our problem

is opened at the end where x = I, the analysis becomes more complex and

we shall give only an outline of the derivations. Large gaps in the mathe-

matical procedure are to be expected and many statements and equations

must be taken for granted. If, however, the arguments of this chapter

have been carefully followed, the results should seem plausible. Even

though many of the details are missing, the following summary should shed

considerable light upon some rather complicated acoustical phenomena.

Two limiting cases will be considered first. If an acoustic piston has a

face large in diameter compared with X, it will radiate into free air a beam

of plane sound waves whose cross-sectional area is the same as that of the

piston itself. A closely fitting cylindrical tube placed in front of such a

piston will obviously have no effect upon the radiation. As a result, we
may conclude that the value of zs near the face of a piston placed at the end

of a cylindrical tube whose diameter is large compared with X will be p c,

just as for plane waves in free space. The quantity zs is all real. There

are no reflections or standing waves and there is no "wattless" power

periodically returned to the source.
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At the other extreme, when the tube diameter is small compared with X,

practically all of the wave energy reaching the open end is reflected back

towards the piston. It can be shown (see Morse) that the specific acoustic

impedance at the piston is in the nature of an electrical reactance, just as

was the case with the closed tube. A mass of air near the open end of the

tube moves as a unit, with a reacting force proportional to its acceleration.

When the frequency is low enough so that the length of the tube is consid-

erably less than X, the specific acoustic impedance at the piston face is

approximately

z s ^icoP0 (Z + 0.6r), (5-42)
=0

where I is the tube length and r its radius. This equation, which neglects

the small amount of power radiated from the small open end of the tube,

shows zs to be in the nature of an inductive reactance, since it is positive.

With longer tubes, stationary waves may occur, and zs may be either plus

or minus, depending on the relationship of I to X, and therefore may be

either inductive or capacitive.

The dimensions encountered in practical sound problems are rarely the

limiting ones that are very large or very small compared with X. Rather

they are comparable to X. Equation (5-43) is an approximate expression

for the value of zs at the driving end of a cylindrical tube, open at the far

end, and for which the diameter is neither very large nor very small com-

pared with X.

^ Poc tanh 7T la + j (13 + |
Z

)],
(5-43)

where a and /3 are functions of X and of the tube dimensions. The extent

to which reflection occurs at the open end determines the value of a, while

]8 may be plus or minus, depending on the phase associated with the re-

flection. As might be expected, zs is neither all resistive nor all reactive,

but in general is a combination of both, with the proportions determined by

the ratio of tube dimensions to wavelength. Interpreted in simple terms,

the form of zs indicates that some fraction of the energy leaving the

piston at any instant is reflected upon reaching the open end and the

remainder is radiated into space as real sound energy.

A few of the wind instruments, like the piccolo and the pipe organ, make

use of tubes of constant cross section. The mechanism by which waves

are set up within such tubes is not easy to visualize, since no vibrating

driver is used but instead a steady stream of air is blown in near one end.

This will be discussed later in Chapter 7.
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5-15 Horns. When the factor of flare is added to a cylindrical tube,

it becomes a horn. Horns are usually of circular cross section, but often

are square or rectangular, for structural convenience. What is important

in the following analysis is not the shape, but rather the rate at which the

cross sectional area increases as one moves down the axis of the horn.

To obtain equations of reasonable simplicity it is advantageous to

assume that plane waves set up at the small end of the horn by an ideal

acoustic piston are maintained as plane all the way down the horn. This

seemed a reasonable assumption in the case of the cylindrical tube, but

with the introduction of flare, a gradual transformation from a plane to a

spherical wave shape is to be expected. A more precise analysis of horn

behavior that takes this process into account, however, will lead to the

same general conclusions as those summarized in this chapter.

We shall also assume that friction at the walls dissipates negligible

energy and, to encourage simpler mathematics, that the mouth of the horn

is large compared with the wavelength of any disturbance traveling along

the axis. (Specifically, that the 'perimeter of the mouth is larger than X.)

This latter assumption is rather violent for horns of practical dimensions

but it represents a considerable mathematical simplification because,

from considerations of diffraction, all wave energy reaching the mouth will

then leave the horn, with no reflections. At the end of our horn discussion

we shall briefly consider the effect of mouth size upon horn behavior. The

effect is complicated and only qualitative comments will be given.

Even though a plane wave front is assumed throughout the interior of

the horn, it is necessary to alter the original differential equation for plane

waves in free space to take account of the expanding cross section. The

essential change is the introduction of a new expression for the dilatation,

5 = v/Vo. This expression takes account of the variation of the cross-sec-

tional area S with the distance along the z-axis and may be written

6 " S dx
'

(If S is constant, as in a beam of plane sound waves, 5 becomes d^/dx, as

for plane waves in free space.) With this change, it can be shown that the

differential equation describing pressure variations as a function of time

and of distance along the axis may be written

dJP = cA±(S^\ (5-44)
dt*

C SdxV dx)
K J

This is the general differential equation for any horn. Once the function

S = f(x) is specified, the shape of the horn is defined. It remains, then,

to integrate Eq. (5-44) in order to completely determine the pressure p
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as a function of x and t. Once p is known, all other important wave prop-

erties within the horn may be determined.

Of all the possible forms for the function S = f(x), two only will be dis-

cussed here, i.e., those defining the conical and the so-called exponential

horn. Other shapes have been studied but these two are most widely

used in practice.

5-16 The conical horn. The conical horn is the oldest and, at least

until recent years, the most widely used of horn shapes. It is defined by

the equation

S =4+5)' (5-45)
Area = S=S,

Area=S,

The conical horn.

In Fig. 5-5, So is the cross-sectional

area (assumed to be circular in shape)

at the small end of the horn (x — 0),

where the energy is introduced. The
distance x is measured from this

small end back to the position of the

geometrical apex of the cone. The quantities So and x are related to the

rate of flare. As is seen in Fig. 5-5, the factor x may also be defined as

2/o/tan <->, where y is the radius of the small end and 4> is half the plane

vertex angle of the cone. The value of x is therefore essentially determined

by the ratio of the size of the driver, placed at the small end of the horn,

to the rate of flare as controlled by the angle <t>. The parameter x , as we
shall see, is an important factor controlling the behavior of a conical

horn.

If the function given by Eq. (5-45) is inserted into the differential

equation for a horn, (5-44), the result is an expression having a mathe-

matical form identical with that for spherical waves in free space. (This

is mathematically true, even with the physical assumption that the wave

front remains approximately plane as the disturbance travels down the

horn.) The solution for p may then be written down immediately, assum-

ing the mouth of the horn large compared with X so that no reflection

takes place. As in the case of spherical waves in free space, the pressure

falls off inversely with the distance along the axis of the horn but the coordi-

nate x for the horn replaces the coordinate r used for spherical waves.

From the expression for the pressure, the equation for the particle

velocity £ may be found by means of the usual wave relations. Hence

one may evaluate the specific acoustic impedance at the small end, where

x = 0. The results are



118 ACOUSTIC IMPEDANCE. BEHAVIOK OF HORNS [CHAP. 5

(Za)x=0 = R + jX,

R = poc-

where

and
\2tt x J

1 +

X = PoC.
2wx°

1 + /J_AY
\2tt Xo)

(5-46)

It will be noted that both R and X are functions of the ratio of X to the pa-

rameter x .

An interesting comparison can be made between the equations just

obtained and the expressions for the two components of z8 for a point on a

pulsing sphere radiating spherical waves into free space (see Eq. (5-20)).

A small pulsing sphere radiates poorly since, from Eq. (5-20), when r is

small the real part of zs is small compared with the imaginary part. The

quantity x Q appearing in Eqs. (5-46) affects the ratio of R to X in the same

manner. A small vibrating source is easier to construct than a large one

(for some of the reasons, see Chapter 11). The use of a conical horn is

advantageous because although a small acoustic piston, like a small pulsing

sphere, will radiate poorly, if we couple to it a conical horn for which x is

large compared with X, we obtain a radiating system which possesses the

efficiency of a pulsing sphere of much larger radius (where R is greater in

proportion to X) . Since x = i/o/tan <f>, we may either make yo large or, as

is more common with the usual driver, where y is necessarily small, we may
ensure a large value of x by using a very gradual taper so that cf> is small.

The next section will throw still further light on this matter.

5-17 Transmission coefficient for a horn. To show how the ratio x /\

enters into the efficiency of a conical horn, we shall define transmission

coefficient for a horn of any taper. The transmission coefficient is the ratio

of the real power radiated into (and therefore out of) a given horn, to the

power radiated by the same acoustic piston, having the same velocity,

into an infinitely long cylindrical tube of the same cross-sectional area as

the small end of the horn. In the case of the cylindrical tube, all instan-

taneous power will flow away from the piston, since plane waves of constant

cross section will be set up and zs at the piston face will therefore be poc.

The transmission coefficient consequently is a measure of the efficiency of

a horn as compared with a simple direct generator of plane waves, the

latter process being the most efficient from the standpoint of real radiated

sound power.
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For the cylindrical tube, the average power fed in by the piston is

U t = (£rms)
2
poC#o.

For the conical horn, making use of the

expression for R from Eq. (5-46), the

power is

0,5
PoCSq

1 + /I AY
\2ttW

Therefore the transmission coefficient

r for a long horn with a large mouth is

1

1 +
\2tt Xo)

(5-47)

0.3 0.4 0.5 0.6
x /\

Fig. 5-6. Transmission coefficient r
for a long conical horn with open end
large enough to eliminate reflection.

(After Morse)

Figure 5-6 is a plot of r vs the ratio x /\, the significant parameter. It is

seen that for a given rate of taper, where x is constant, the abscissa is

essentially the frequency, since x /\cc
f. While the horn will radiate at

all frequencies, its efficiency obviously falls off rapidly at the lower end of

the spectrum. If x is increased, one may go to longer wavelengths (or

lower frequencies) before the transmission coefficient falls much below
unity. However, for a driver of fixed size, it will be necessary to decrease

the cone angle <j> and to increase the length of the horn so that the mouth
will be large enough to preclude reflections. A very long and therefore

bulky horn is desirable for good efficiency over a wide frequency range.

(Such a long horn may, however, actually decrease the efficiency at very

high frequencies, due to frictional forces along the horn walls.) In general,

the efficiency of the conical horn, indeed of all horns, falls off at the low
frequencies due to practical limitations of size.

5-18 The exponential horn. It is the performance in the low frequency
range that makes the exponential horn so superior to the simple conical

horn. An analysis similar to that for the conical horn therefore seems
worthwhile. An exponential horn is one whose cross-sectional area varies

according to the equation
'•>

S = So €
2*'\ (5-48)

where So, as for the conical horn, is the area of the small end and S is the
area of any other cross section a distance x from the small end (Fig. 5-7).
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The constant h is the " flare" factor.

Eq. (5-48) may be written

If the cross-sectional area is circular,

(5-49)xlh
y = yoe

where y is the radius of the small end and y is the radius at any distance

x along the axis. If we let x = h in Eq. (5-49), y = ey and h is thus the

distance along the horn axis such that the radius of cross section increases

by the factor 2.718. Note that if h is large, the rate of flare is small, and

vice versa.

If the expression for S given by Eq. (5-48) is introduced into the differen-

tial equation for a horn, the acoustic pressure may be found as a function of

x and t. From the pressure, we can obtain the particle velocity. The

real and imaginary parts of zs = p/£, evaluated at the piston end of the

horn, where x = 0, turn out to be, for outgoing waves,

and

R

X
(5-50)

When X approaches 2irh, so that /(= c/X) approaches c/Zirh, the value of

the real part of zs approaches zero. Below this critical or cutoff frequency ,

f = c/2irh, no real power enters or leaves the horn. This type of behavior

is peculiar to an exponential horn. It can be shown that an exponential

horn transmits waves in the same way as a dispersive medium; different

frequencies travel down the horn with different velocities. At the fre-

quency /o the velocity of propagation of any given phase becomes infinite,

which is equivalent to saying that no true wave motion exists within the

horn, there being no phase differ-

ences along the axis.
j or

Area=S

When x=h,S=S «
2

Fig. 5-7. The exponential horn

Fig. 5-8. Transmission coefficient r for a

long exponential horn with open end large

enough to eliminate reflection. (After

Morse)
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5-19 Transmission coefficient for an exponential horn. Comparison
with the conical horn. The characteristics of an exponential horn are

shown graphically in Fig. 5-8, which is a plot of the transmission coeffi-

cient r against the ratio h/\ (h is the flare factor defined above). For a

horn of fixed flare rate, the abscissa is proportional to 1/X or to frequency.

In this case-v-W" The most interesting feature of the graph

is the sharp cutoff and its relation to flare rate and frequency. The
cutoff occurs for h/\ == 0.16. From this number the critical wave-
length X and the critical frequency / may be determined, once the

value of h has been fixed. A numerical illustration will show how this

may be done.

Suppose that we wish to design a horn whose cutoff frequency is

50 cycles-sec
-1

. This corresponds to X = c/fo ~ 20 ft, and therefore

the required value of h is 0.16(20) ^ 3.2 ft. To ensure good trans-

mission all the way down to 50 cycles-sec
-1

, it will be necessary to select

an abscissa somewhat larger than the cutoff, say a value of about 0.3.

In this case h will be 6 ft. A horn whose radius increases by a factor e

(approximately 3) in a distance of 6 ft along the axis will be a long

one if, for the reasons given earlier, it is

to have a large mouth.

Experimental horns do not exhibit the

mathematically sharp cutoff of the solid

line in Fig. 5-8, but instead show a

gradual tapering off at the lower end,

somewhat as shown by the broken curve.

This deviation from theory is not surpris-

ing, in view of the approximations in the

mathematics. The essential shape, how-
ever, is as predicted.

A striking comparison can be made
between a long, wide-mouthed conical

horn and an exponential horn of identi-

cal over-all dimensions by plotting the

transmission coefficients of each. The
abscissas in this case are simply frequen-

cies. These graphs are shown in Fig.

5-9, with the specific data for the flares.

The superiority of the exponential shape .

FlG
;

5-9
- Frequency character-

£ .r o .... istics for a conical and an exponential
for uniform frequency transmission IS horn of the same over-all dimensions.
most apparent. (After Morse)

Frequency
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5-20 Effect of reflections upon horn behavior. With horns that are

not very long and where the perimeter of the mouth is not large compared

with the wavelength, the conclusions reached above are subject to con-

siderable modification. The specific acoustic impedance at the radiating

mouth is no longer that for plane waves, p c, and some of the energy is

reflected back to the source, giving rise to standing waves. This is desir-

able in certain musical instruments where this resonance produces the

characteristic pitch (and overtones). In all musical instruments some

radiation is essential, in addition to resonance, and both radiation and

resonance come about naturally when the horns are of limited dimensions.

When horns are used in loudspeaker systems for the wide-range reproduc-

tion of music, however, resonance is a definite drawback, giving rise to an

unnatural enhancement of certain frequencies and attenuation of others.

When reflection takes place the analysis of horn behavior is more compli-

cated and we shall not attempt it here. When an approximate expression

for zs at the small end of such a horn is obtained, the magnitude of the real

part, R, is found to fall off at the lower frequencies, as before, but there

are numerous peaks and valleys at frequencies corresponding to the horn

resonances. For practical purposes, it is clear that horns which are long

and large-mouthed (and so, unfortunately, bulky) are the most satisfactory

for a wide range of frequencies.

5-21 The horn as an impedance matching device. From the electrical

analog point of view, we may make an important generalization about the

behavior of horns. We have seen that a small vibrating surface, spherical

in shape or otherwise, is an ineffective radiator of sound waves because of

the large reactive component of the acoustic impedance at its surface.

On the other hand, an acoustic piston large in diameter in comparison with

the wavelength encounters the specific acoustic impedance p c character-

istic of plane waves and is therefore an effective radiator. With the horn

in front of it, a small acoustic impedance may be made to radiate as would

a large piston, emitting waves that are nearly plane (since zs is then all

real) over a large frequency range. In this sense the horn may be con-

sidered as a kind of impedance matching device, transforming the acoustic

impedance characteristic of a small source to that necessary to match the

acoustic impedance for plane waves in free space. In this way a great

deal more power is radiated than would be the case without the horn. This is

the same impedance matching idea that is so important in electrical circuits.

5-22 The "hornless" or direct-radiator loudspeaker. Specific acoustic

impedance at the surface. In recent years there has been a tendency, par-

ticularly for compact sound reproducers in the home, to dispense with the
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Fig. 5-10.

infinite baffle.

(b)

Acoustic piston set in an

use of the horn entirely, and so avoid its numerous design complications.

The radiator is then simply the equivalent piston itself, set in a large baffle

(Fig. 5-10a) as nearly impervious to sound as possible, whose purpose is to

ensure a single, rather than a double, source action, as discussed in Chap-

ter 3. Unless the diameter of the piston face is impossibly large, one

would expect, from the discussion at

the end of the previous section, that

the radiation efficiency would be

low for low frequencies. This is in-

deed true, as we shall presently see,

even when the baffle area is vdry

large.

The outline of the mathematical

procedure necessary to obtain the

acoustic impedance at the piston

face is as follows. The baffle area is

assumed to be infinite in extent. Re-

ferring to Fig. 5-10b, the first expres-

sion to be set up is for the instantaneous differential pressure dp occurring

at a point b on the piston face, due to the spherical waves originating from

a differential area dS at another point, also on the piston face. This is

readily done in terms of the spherical wave equations, using suitable coordi-

nates. The total pressure at b due to all such areas dS is obtained by inte-

grating over the piston face. The total instantaneous acoustic force F
on the piston is then the second integral of p dS' over the area of the piston,

dS' being an area element at point b. The integration difficulties in this

process are considerable but they may be overcome. The average acoustic

pressure is obtained by dividing the total force F by the area of the piston.

This average pressure placed over the piston velocity (the same as the

velocity of the air next to it) yields an average value of zs . The real and

imaginary components of zs so obtained are

i2 = PoC
[
1 -©JlW

]
and

" '

(5-51)

X = PQcM(w).

In these expressions, w = 4irr/\ where r is the radius of the piston face.

The symbol Ji(w) is the usual one for a first-order Bessel function. A
Bessel function is a certain regular, convergent power series (appearing

often in solutions to the differential equations of physics) whose sum may
be computed and tabulated for various values of the argument w. There-

fore for every value of r/X there is a specific number representing Ji{w).
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The symbol M(w) represents a certain definite integral whose numerical
value is a function of w and of the coordinates chosen in the integrals

described above.

The plot of R/poc in Fig. 5-11 is identical with a plot of the transmission

coefficient defined earlier in connection with horn radiation. As in the
graphs for the horns, the abscissas

are proportional to the frequency,

for any one piston of a given radius.

It is often thought, by practical

workers in the field of acoustics,

that the use of a very large baffle

will, of itself, ensure the efficient

radiation of the lowest frequencies

in the audible spectrum. From
Fig. 5-11 it can be seen that even

the use of a baffle of infinite area

does not prevent a serious falling off

below a certain frequency. The
value of this fairly critical fre-

quency depends on the piston ra-

dius r. If numerical values are in-

serted, the results are discouraging from a practical point of view. Suppose
that we desire a source of good radiation efficiency down to a frequency of

50 cycles-sec-1
. Taking the abscissa w = 5.0 as the lower limit of the

horizontal portion of the curve for R/p c, and using the proper value for X
(in this case about 20 ft), we find that the necessary piston radius is 8 ft!

It is quite clear, then, that with the more modest value of, at most, 0.5 ft

for the radius of the ordinary radio or phonograph loudspeaker, the acoustic

radiation for low frequencies, assuming constant piston velocity, will be very
poor. Fortunately, as we shall see in Chapter 11, it is possible to compen-
sate for the inherent low frequency limitations of the direct radiator quite

satisfactorily by the use of mechanical resonance and the proper design

of the mechanical impedance of the piston itself. When we come to this

practical discussion, it will be seen that there are serious complications in

the high frequency range, not apparent in the curves shown in this chapter.

This is due primarily to the difficulty of making the piston, which is as

large as possible for the reasons just given, respond efficiently to the driving

force at the higher frequencies. For this and other reasons, the present

trend is to feed the high frequencies, by means of a frequency-selective

network, into a small horn speaker whose driving piston may be much
smaller and lighter.

15

w=4irrA

Fig. 5-11. Transmission coefficient r for

an acoustic piston mounted in an infinite

baffle. (After Morse)
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5-23 Distribution pattern for energy leaving horns or direct radiators.

It is to be noted that no clue has been given in this chapter as to just how the

energy leaving the horn or direct radiator is distributed in space. This

is primarily a matter of diffraction and certain general features of the distri-

bution should be apparent from the discussions of Chapter 4. If the di-

ameter of the mouth of a horn or of the end of a directly radiating acoustic

piston is large compared with wavelength, there is a good acoustical match

with free space for the production of a beam of plane sound waves. The

cross-sectional area of this beam is the same as the radiating area. For

piston or horn areas small compared with X, one would expect the spherical

distribution characteristic of a point source. The interesting and impor-

tant in-between cases, where the radiating areas have diameters comparable

to X, give rise to diffraction patterns, the features of which were discussed

in Chapter 4.

5-24 General significance of acoustic impedance for radiation. The

results of the several specific problems analyzed in this chapter have wide

application in many aspects of acoustics. The energy emitted from the

mouth in speech or in singing is affected by the value of the acoustic imped-

ance at the opening, and the design of musical wind instruments, histori-

cally fashioned on a purely empirical basis, unconsciously has taken account

of the problem of impedance matching. Instruments like the piccolo and

the flute, with their relatively high registers, have short horns or tubes with

mouths of comparatively small diameter, whereas the lower register brasses,

like the contrabass tuba, require and have large radiating ends.

An interesting and important parallel to these problems in radiation

occurs in sound reception. When sound waves strike the ear, that fraction

of the energy that eventually passes to the mechanism of the inner ear is a

function, among other things, of the impedance match for the particular

frequency or frequencies involved at the entrance of the ear. Again, the

proper design of microphones, whose operation depends on the transfer of

acoustic energy to some mechanical diaphragm, ribbon, etc., takes account

of the acoustic impedance in the air and its relation to the mechanical

impedance of the instrument.

Other applications of the idea of acoustic impedance will appear later in

this book. It is a concept of growing usefulness in problems of acoustics,

fully as fruitful in its field as is the similar idea of radiation impedance in

the propagation of electromagnetic waves.
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PROBLEMS
1. Find the real and the imaginary-

parts of the following complex quantities:

(a) 10e' (30°>; (b) 5e-^10°); (c) 2e2+>'<10°>;

(d) 7e
-2-^30O

>.

2. Rewrite the following complex
quantities in the polar form: (a) 4 +j3;
(b)10 -j3;(c) \a+jb)\

3. Reduce the following expressions

to the form a + jb: (a) (2+j)e^ 30°>;

(b) e^°°> + e-^o°>;
(c) (c - jd) (e + jf).

10. Referring to Section 5-12, discuss

the physical situation in the closed tube
of fixed length I for those frequencies at

which z. approaches zero or infinity.

Make use of Eqs. (5-36), (5-37), (5-38),

and (5-39).

11. An acoustic piston sending plane
waves into the closed tube of Section 5-12
has itself a mechanical impedance, exclu-

sive of the air load, of 80 + j'50 cgs units

(mechanical ohms). If the tube length is

100 cm and the cross-sectional area is 10

4. A complex expression has the form cm2
,
find the total mechanical impedance

(e+jdY
e — jd

Rationalize the denominator

by multiplying the expression by —

,

e + jd
collect terms, and reduce to the form
a + jb.

5. An acoustic pressure is given by
p = pmei0}t . The particle velocity at the

same point is £ = (£)me?'
(w<+

>. (a) Find
the specific acoustic impedance in the form
a + jb. (b) What is the average real flow

of power at the point?

6. Give a physical argument to show
why the reactive component of the specific

acoustic impedance at the surface of a
small sphere should be inductive (i.e.,

-\-jX) rather than capacitive.

7. What is the effect upon the reso-

nance frequency of a Helmholtz resonator

of doubling (a) the volume Vo, (b) the

length I of the neck, (c) the cross-sectional

area S of the neck?

8. Compute the approximate resonant

frequency in air of a Helmholtz resonator

where the boundaries of Vo are those of a
box 1X2X3 feet and where the cylin-

drical neck has a length of 6 inches and a
diameter of 4 inches.

of the piston at a frequency of 50 cycles-

sec-1, including that due to the presence
of the air in the tube.

12. Compute the total effective me-
chanical impedance of the piston in prob-
lem 11 if the further end of the tube is

open. Make use of Eq. (5-42), first

checking its validity for this case.

13. A long conical horn has a small end
4 cm in diameter and a semiplane vertical

angle of 10°. From the graph of Fig. 5-6,

find the transmission coefficient for a
frequency of 700 cycles-sec

-1
.

14. The cutoff frequency of a long
exponential horn is 100 cycles-sec-1 ,

(a) What is the flare factor hi (b) Along
the horn axis, how far apart must the

positions be for the ratio of one radius to

the other to be 2:1? (c) If the small end
of the horn has a radius of 2 cm, how long

must the horn be to have a mouth radius

of 50 cm?

15. The horn in problem 14 is being
driven by an acoustic piston of constant

velocity, independent of frequency. The
decibel scale may be used to compare any
two powers, as well as any two acoustic

intensities. At what low frequency will

the power output of this horn drop 1 db
below the output at very high frequen-

cies?

9. For the resonator described in prob-
lem 8, plot a resonance curve to show £ as

a function of frequency for a driving force

of constant maximum value.

16. (a) For a long conical horn, plot

the reactive component X at the piston

end as a function of x /X. (b) Plot a
similar curve for the exponential horn.
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using as abscissas the ratio h/\. Compare an acoustic piston of radius 6 inches. At

these graphs with the plots of the real what low frequency will the power output

part of the specific acoustic impedance. drop 5 db below the output at very high

frequencies, assuming a constant piston

17. Change the abscissa scale of the velocity, independent of frequency? (See

graph of Fig. 5-11 to frequency, assuming problem 15 for use of the decibel scale.)



CHAPTER 6

LONGITUDINAL WAVES IN DIFFERENT GASES. WAVES IN
LIQUIDS AND SOLIDS

Throughout the preceding chapters we have been dealing entirely with
the medium air, since longitudinal waves through air are of the most prac-

tical interest in acoustics. In this connection we have been using for the

velocity of sound in air the value 331 meters-sec-1 , which has been stated

to be the experimental value under ordinary free-air conditions. This

value also agrees with the theoretical equation c = V(B/p
, where (B is the

adiabatic bulk modulus. To understand more fully the transmission

process of longitudinal waves in air and in other gases as well, let us exam-
ine carefully the factprs determining the wave velocity c.

6-1 Isothermal and adiabatic bulk modulus for an ideal gas. If one
assumes (as Isaac Newton did) that the deformation process associated

with longitudinal waves in an ideal gas is isothermal, the proper value of

the bulk modulus (B may be obtained directly from the equation of state for

such a gas. Assuming the temperature to remain constant, we have

and therefore

so that

PV = constant

PdV + VdP = 0,

dP
-dV/V = ®< = P ' (6-D

When this value of (B» is introduced into the expression for the wave
velocity c, one obtains a value which, for air, is smaller than the experi-

mental value by about 20%. Newton had an ingenious but wholly erro-

neous explanation for this discrepancy. * Laplace showed that the correct

elastic constant to use is the adiabatic bulk modulus, (Ba . For an ideal gas

undergoing an adiabatic change, the relationship between pressure and
volume is

PVy = constant,

where 7 is the ratio of the specific heat of the gas at constant pressure to

that at constant volume. Taking differentials, we have

PV*-1 dV + Vy dP =

* See Miller, Anecdotal History of Sound, Macmillan, 1935.

128
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and upon rearranging, we get

dP
yP

129

(6-2)
-dV/V

This value of 63, when inserted into the expression for c, gives good agree-

ment with the observed value for waves of ordinary amplitudes over the

range of audible frequencies. We may therefore write for sound waves

yP
Po

(6-3)

The value of the dimensionless ratio 7 is dependent upon the number of

so-called degrees of freedom of the gas molecule, such number in turn being

dependent on the molecular complexity. For monatomic molecules 7

turns out to be 1.66, for diatomic molecules it is 1.40, for triatomic mole-

cules, 1.29, etc. In Table 6-1 are listed a few common gases, together

with the experimentally determined values of 7, all at a pressure of one

atmosphere. Notice that for air, whose major constituents are diatomic

gases, the value of 7 is 1.40, which is characteristic of such gases.

TABLE 6-1

VALUES OF t FOR DIFFERENT GASES AT 1 ATM PRESSURE

Gas Temperature 7

Air 17°C 1.403

Carbon dioxide 15°C 1.304

Hydrogen 15°C 1.410

Nitrogen 15°C 1.404

Oxygen 15°C 1.401

6-2 Factors affecting the velocity of longitudinal waves in gases. The

quantity 7 varies for different types of gases, but for any one gas it is quite

constant for wide variations in temperature. For air, 7 remains at the

value 1.40 over a temperature range of — 80°C to at least 150°C. The

other two factors determining the velocity of waves of small amplitude are

the density p and the pressure P. The density varies for different gases,

and both density and pressure are related to the absolute temperature T

through the gas laws. The temperature is therefore an implicit variable

in determining the velocity of a wave. Table 6-2 gives the velocity of

sound waves for various gases. The most precise value of c for air, as

computed by averaging a number of the best determinations, * is

c = 33,145 ± 5 cm-sec-1

* Hardy, Telfair, and Pielemeier, Jour. Acous. Soc. Amer. 13, 226-233 (1942).
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for the conditions 0°C, 760 mm of Hg, 0.03 mole percent content of C02

and percent water content.

We are usually interested in the velocity of sound waves in the open air.

The variations in pressure under these conditions are not ordinarily great

enough to affect the velocity of sound waves significantly. The variations

in density due to temperature fluctuations, however, are more important.

Since at constant pressure the density of a gas is inversely proportional to

the absolute temperature T, we may write for a fixed pressure of one atmos-

phere,

PF
c = cm \h^- (6-4)

The velocity of propagation of ordinary sound waves is quite independ-

ent of the frequency, as Eq. (6-3) indicates. At very high frequencies,

well into the ultrasonic region, some frequency dependence is to be expected

because the deformation process tends towards the isothermal as the fre-

quency is raised to very high values. That this is so does not seem at all

obvious. Because of the shorter time factor at the higher frequencies, one

might think the process to be even more completely adiabatic than at

lower frequencies. This reasoning, however, neglects the importance of

the temperature gradient, as has been pointed out by Herzfeld and Rice.*

The total heat flow between adjacent compressions and rarefactions during

any one half-cycle is proportional to 1// because of the time factor, but due to

the increased steepness of the temperature gradient (dT/dx) at the higher

frequencies, the rate of flow will be greater in proportion to/2
. As a result,

the total flow increases as the frequency is raised and is proportional to /.

With such a flow, the process tends to be less adiabatic. The frequencies

at which this effect becomes significant are very high (of the order of 108

or 109 cycles-sec
-1

).

TABLE 6-2

VELOCITY OF SOUND WAVES FOR VARIOUS GASES

Gas
Velocity, c (calculated, cm-sec -1

)

0°C, 1 atmosphere

Carbon dioxide

Helium
Hydrogen
Nitrogen

Oxygen

2.58 X 104

9.70

12.69

3.37

3.17

*Phys.Rev. 31, 691 (1928).
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6-3 Experimental determination of the velocity of sound waves in gases.

Careful experimental measurements of the velocity of sound waves in the

open air were made as early as 1738, when data based on cannon fire were

recorded. The numerous observations taken under military auspices

since that date have usually been made with an explosive type of source,

giving rise to waves of rather high intensity. Using a source of more

moderate intensity, T. C. Hebb (at the suggestion of Michelson) in 1905

and again in 1919* made a very careful determination of the velocity c in

open air, through the direct measurement of the wavelength in a standing

wave pattern set up between two coaxial parabolic reflectors. The source

was a whistle of known frequency. Having measured the wavelength X, the

velocity c can be computed from the relation c = /X.
,

Most of the more

recent experiments are basically of this same general type. Sound sources

of standard frequency whose value is known to a high degree of precision

are now familiar objects in every well-equipped acoustical laboratory.

(Such frequency standards will be discussed in Chapter 10.) With such

sources available, the precision of the determination of c is then dependent

on the precision with which the frequency is known and on the precision of

the measurement of X, usually rather high.

Because of the ease with which the density, pressure, and temperature

may be controlled and varied, many measurements of c have been made

with air and other gases in closed tubes. These experiments also make

use of a standing wave pattern and are variations on the experiments of

Kundt in 1866. Kundt set a column of air into vibration by means of an

exciting rod made to vibrate longitudinally by being rubbed with a rosin-

coated piece of leather, as shown in Fig. 6-la. As the plunger A is moved

along the tube, adjusting the length of the air column, resonance is found

to occur for certain positions. In the associated standing wave pattern

there are regions where the air is stationary, called nodes, and others where

the air is in violent motion, called antinodes. As we shall see in our dis-

cussion of stationary waves in the next chapter, the distance between adja-

cent nodes is just X/2, The nodal planes are made visible experimentally

by introducing into the tube light particles such as cork dust. In the

presence of excitation these particles collect in rather sharply denned piles

at the nodal regions. (There usually occur subsidiary striations, much

more closely spaced than X/2. The spacing of these small striations is

largely a function of particle size, rather than of the wavelength of the

tube, and may be explained in terms of a Bernoulli effect upon the individ-

ual particles.) In the modern versions of the Kundt's tube experiment,

* Phys. Rev. 20, 91 (1905); also 14, 74 (1919).
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Clamp

To electrical

oscillator

i-l-i

(a)

4-j

(b)

Fig. 6-1. Kundt's tube.

i

an electrically driven loudspeaker, equivalent to an acoustic piston at one

end of the tube (Fig. 6-lb), replaces the exciting rod. The frequency of

the wave is then that of the electrical oscillator connected to the driving unit.

The wave velocity c measured for gases confined to tubes is found to be

somewhat smaller than that measured under free-air conditions, unless the

diameter of the tube is very large. This is due to the retarding effect

caused by viscosity at the walls, and to heat conduction at the walls, which

make the bulk modulus tend toward the isothermal rather than the adia-

batic value. Helmholtz, Kirchhoff , and others derived formulas that give

a theoretical value of c as a function of the tube diameter, the frequency,

and a dissipation coefficient.

To the chemist and the physicist the velocity c is of interest beyond its

own intrinsic value in acoustics. The direct measurement of the specific

heats, which for any gas determine the value of y, is a rather difficult

matter. Equation (6-3), on the other hand, furnishes an excellent means

of computing y in terms of c, P, and po, all quite easy to determine. Many
of the best values for y have been found in this way.

6-4 Transmission of longitudinal waves through gases as related to

kinetic theory. In discussing wave propagation through gases, we have so

far treated the medium as continuous in the ideal sense. As mentioned

earlier, ordinary sound sources and receivers are very large indeed com-

pared with the average spacing of the molecules under the usual atmos-

pheric conditions, so that the assumption of virtual continuity is a valid

one. In the microscopic sense, however, the actual transfer of momentum
associated with the passage of a wave through the medium must be accom-

plished through impacts between molecules. It is therefore reasonable to
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assume that there is some connection between the molecular speeds of

kinetic theory and the velocity of sound waves. This is indeed so, as we
shall now show.

According to the kinetic theory of gases, the molecules of a gas are mov-

ing about in space with assorted velocities ranging in value, for a very large

number of particles, from near zero to near infinity. The distribution of

the various velocities among the molecules between these limits is a definite

one, known as the Maxwellian distribution. From the mathematical

expression for this distribution it is possible to arrive at three kinds of

"average" velocities, characteristic of a given gas under a given set of con-

ditions. These are respectively up , the most probable velocity; ua , the

velocity which is the arithmetic mean over all the molecules; and Uk, which

represents the kinetic energy mean and is the square root of the average

squared velocity. These three velocities bear the ratios

uk :ua :up = 1:0.920:0.816. (6-5)

It is easy to associate the velocity Uk with the velocity of sound waves,

since

Po = q Pofa*)
2
,

where po is the density of the gas and Uk is the root mean square molecular

velocity. Therefore

(ukf = —°. (6-6)
Po

Since the total kinetic energy must be distributed equally among the ener-

gies associated with the x, y, and z directions, the average squared velocity

for any one of these directions, such as x, will be

(Uk)l = —
Po

and the root mean square velocity along x is

(tfc). = Jf°- (6-7)
\ Po

This will be recognized immediately as identical with the expression for the

velocity of a sound wave, assuming the process to be isothermal. Since

the above simple equations of kinetic theory assume no temperature varia-

tions throughout the body of the gas, a result characteristic of an isothermal

process is to be expected. Using the relations between Uk and the other

velocities characteristic of a Maxwellian distribution, we may write, for air,

Cadiabatic = Vt ^isothermal = 0.68w& = 0.74^o = 0.84^p . (6~8)
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The point to emphasize in this result is that the velocity of wave propa-

gation and any one of the "average" molecular velocities of kinetic theory

are virtually of the same order of magnitude. This will seem quite reason-

able if one considers the order of magnitude of the particle velocities en-

countered in sound waves of ordinary intensities. It is rare for particle

velocities greater than 10 cm-sec-1 to exist in the waves associated with

speech and music, and usually they are much smaller. On the other hand,

the " average" velocities characteristic of the random molecular motion of

kinetic theory are of the order of 104 to 105 cm-sec-1 , some one or

ten thousand times as great. The process of wave propagation can be

pictured as follows. In darting about near the sound source, some of the

gas molecules come into contact with the vibrating surface and so receive

additional momentum, small compared with the average momentum they

already possess. This additional increment of momentum is handed on to

other molecules as the first set chances to strike them in the course of their

random motion. Since the original momentum was a directed quantity,

the disturbance propagates in a definite direction in space at a speed

primarily determined by the kinetic theory velocities, not by the particle

velocity imparted to the molecules at the source. Note that this picture is

entirely consistent with the observation that the wave velocity remains con-

stant even over distances great enough so that the particle velocity asso-

ciated with the wave has become extremely small.

If the increment of particle velocity imparted by the vibrating source

becomes an appreciable fraction of the random molecular velocity, the

wave velocity becomes higher than the normal value for waves of small

amplitude, as would be expected. Air disturbances originating with

explosions often travel outward, in regions near the source, with speeds

several times that for normal sound waves. Other interesting facts con-

nected with high intensity waves appear in the next section.

6-5 Waves of large amplitude. In our derivation of the differential

equation for waves of small amplitude in Chapter 2, we assumed that (B

( = —^rrr) was a constant. As has been seen in Section 6-1, the adiabatic
\ -v/VoJ
bulk modulus (Ba = yP, for an ideal gas. Since the total pressure P varies

slightly in the presence of the wave, (B cannot be said to be strictly a con-

stant. For waves of ordinary amplitudes, the slight fluctuations in (B

are of no importance but for waves of abnormally high amplitudes the

variations in (B cannot be ignored. To see the general effect upon wave

propagation when the intensities are very large, we shall derive the differ-

ential equation for plane waves without assuming (B to be necessarily

constant.
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It will be remembered that Newton's second law for the thin layer of

air, as given by Eq. (2-10), is

dt* po dx K y;

An exact relation for a given mass of gas undergoing an adiabatic change is

Po \v)>

where P and T are the pressure and volume at the beginning of the change

and P and V are the corresponding values after the change. Solving for P
and introducing the dilatation 8, we have

The partial derivative of P with respect to x becomes

g = ! = _ 7po(1 + 5)-<^|| (6-io)

(since 8 = d%/dx). This result may be written in terms of the condensation

s rather than in terms of 5 by making use of the exact relation between s

and 5 given by Eq. (2-3),

Inserting this value for dp/dx into Eq. (6-9), the wave equation becomes

S = c*(l +«)<-> ft (6-11)

Comparison of this differential equation with the one for waves of small

amplitude will show that, in effect, c2 has been replaced by c2 (l + s) (y+1)
.

Since the condensation s is itself a function of x and t, Eq. (6-11) is essen-

tially a more complicated mathematical equation than the usual plane

wave equation, and the solution to the latter no longer applies. From an

approximate point of view, however, we may conclude that the solution

implies some kind of a traveling disturbance of the general form/(x + c't),

where c' is not constant but is equal to c(l + s) (7+1)/2
. The condensation

is itself a quantity that varies from point to point in the path of the wave.

Therefore different parts of the disturbance must travel with different speeds.

Wherever the condensation is large, the propagation speed will be greater

than where the condensation is small. Since a wave in which the maximum
condensation is large will also be one in which the amplitude, maximum
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Fig. 6-2. (a) There is no change in

wave form for waves of small amplitude,

(b) Distortion of wave form for a wave of

large amplitude.

excess pressure, etc., are relatively

large, the same thing may be said

in terms of the magnitudes of the

other wave parameters.

The significance of the statement

above is simply that as the disturb-

ance travels through the medium
there will be a progressive change

in the wave form, no matter what

the wave shape may be near the

source. Crests will progress faster

than troughs, so that a sine wave

will eventually become distorted in

such a way that the portion of the

graph just ahead of each crest will

acquire a steeper and steeper slope,

as indicated in Fig. 6-2 b.

Water waves behave in this manner when reaching shallow water. The

"curling" tendency of such waves is due to just such a variation in velocity

for different parts of the disturbance, although the physical reason is a

different one. As the water waves move into shallow regions, the troughs

are slowed down by frictional forces at the bottom, the crests continuing to

advance with nearly the deep water velocity; hence the tendency for the

crests to break over the troughs. In the case of longitudinal sound waves

this latter effect cannot occur, since a compression would then have to

move through a rarefaction, which is a physical impossibility. For the

waves in air, the wave shape ahead of the crests will approach the vertical

but the slope will never change sign. As the wave form becomes more and

more of the sawtooth type, higher harmonics will become more prominent.

Increased dissipation at these higher frequencies will then limit the propa-

gation velocity and so stabilize the wave form.

Fortunately, such effects are negligible with ordinary sound waves, even

after they have traveled over considerable distances. The maximum

value of the condensation, sm, rarely exceeds the order of magnitude of 10~3
,

in which case the velocity c' differs from c, the normal velocity for small

amplitude waves, by no more than 0.1 or 0.2%. If appreciable change of

wave form did occur, there would be serious consequences whenever music

and speech are involved; distortions of all kinds would be apparent as one

moved away from the source. (As a matter of fact, " large amplitude"

distortion of wave form occasionally does occur in the throats of horns fed

with sound of very high intensity. This distortion is quite perceptible to

the ear.)
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Source

Temperature

decreasing with

distance above

surface of earth

Fig. 6-3.

Explosion

Positive

temperature

gradient

upward in

\ this region

\
\
\
\
\

\

Audible

Fig. 6-4. Path of sound pulse from

explosion heard at a great distance from the

source.

6-6 Miscellaneous open-air

effects. While dispersion is a factor

of negligible importance for sound

waves of the usual small amplitudes,

refraction is perfectly possible when-

ever the factors determining the

velocity c vary. In the open air,

temperature gradients usually exist

near the surface of the earth. In

the daytime, temperatures generally

decrease with height above the

ground. Since the velocity de-

creases with a drop in temperature,

waves leaving a source in a direc-

tion having a slight inclination

above the horizontal will bend more

steeply upward as they travel (Fig.

6-3). This often accounts for the

inaudibility of sound to an observer

at no great distance from the source

;

the sound waves have passed over his head. A similar effect, operating

in an inverse manner, undoubtedly accounts in part for the audibility of

explosions at abnormally great distances, with " skip " phenomena for certain

regions much nearer to the source. Calculations from the geometry of the

probable paths of sound waves indicate that, after first falling, air tempera-

tures must rise again, and that they eventually reach a value of about 150°C

at a height of 25 or 30 miles above the earth. Such a temperature gradient

in the higher regions of the stratosphere would give to the sound waves a

path that is concave downward, returning them to the earth at more distant

points but not at intermediate positions (Fig. 6-4). A somewhat similar

effect occurs when electromagnetic waves reach the ionosphere, although in

this case the physical nature of the refraction is, of course, quite different.

Wind is also an important factor in the bending of sound waves. In

passing through a region where there is a gradient in the wind velocity, the

portions of the wave front that lie in the regions where the air is moving

faster will move ahead of the portions lying in the slower moving air, thus

rotating the plane of the wave front and so bending the path of travel.

High winds are known to exist in the upper regions of the atmosphere and

the bending effects referred to in the preceding paragraph are undoubtedly

due, in part, to high altitude winds as well as to the existence of tempera-

ture gradients. Nearer the earth erratic behavior in the propagation of

sound waves is to be expected whenever the air is not perfectly stagnant.
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6-7 Acoustic focusing devices. Mirrors and lenses. High frequency

sound waves reflect well from hard smooth surfaces (see Chapter 8). It

should therefore be possible to construct acoustic mirrors which behave as

do optical mirrors, taking due account of the important ratio of diameter
to wavelength, as discussed in Chapter 4. A small source of sound, such
as a whistle, placed at the focus of a parabolic reflector of diameter much
greater than the wavelength, will reflect a beam of waves which are approxi-

mately parallel. To ensure small divergence, it is best to use an ultrasonic

frequency (whose wavelength is therefore very short).

Since different gases transmit sound waves with different velocities, it is

possible to construct an acoustic lens which will refract and focus in the

manner of an optical lens. The ratio of the velocity in air to that in C02

is 1.28. To construct a converging C0 2 lens, the gas is forced between two
circular sheets of thin rubber bound together at the edges, thus forming a

double convex shape., Considerable reflection will take place at the lens

surface, but enough energy will enter and leave the lens to permit focusing

effects.

Recently Kock and Harvey * have built acoustic lenses whose behavior

depends on somewhat more complicated principles. These lenses are of

two general types. The principle of operation of the first type is easier to

understand. A lens-shaped structure is built up with flat parallel metal

strips whose planes are tipped with respect to the horizontal and whose
shape is such as to give to the total lens a contour similar to that of a con-

verging glass lens. Figure 6-5 is a photograph of the convex side of a

plano-convex lens constructed in this manner. The theory of operation

of the lens may be deduced from Fig. 6-6, which shows a vertical section of

the structure. When a plane wave front strikes the flat side of the lens,

the energy breaks up into segments which travel through the conduits

bounded by the metal strips. The spacing of the plates is about J the

value of the wavelength used (the experimental frequencies ranged from

10 to 13 kc-sec-1), so that the energy emerging on the other side of the lens

from each conduit will diverge freely in accordance with diffraction princi-

ples. The tilt and contour of the individual plates are so chosen that for

a point a on the axis of the lens the length of the various acoustic paths, as

measured from the various entering points to the point a, is constant for

any one of the conduits traversed. Thus the various contributions arriving

at a will be in phase and this point will be the focus of the lens. The
conduits supply the delay necessary to such focusing action, although in a

manner different from the process of true refraction. (Such a lens will

also focus short electromagnetic waves, since the metal boundaries of the

conduits will also " guide" such waves.)

* Jour. Acous. Soc. Am. 21, 471-481 (1949).
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Fig. 6-5.

(Courtesy Bell Telephone Laboratories)

Fig. 6-6. Section of duct-type acoustic lens, showing paths of rays.



140 LONGITUDINAL WAVES IN DIFFERENT GASES [chap.
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.

Fig. 6-7. (Courtesy Bell Telephone Laboratories)

A second type of lens that used "scattering" disks or strips was con-

structed. It had been shown by Lamb and by Rayleigh that the presence

of small scattering obstacles in the path of longitudinal waves has exactly

the same effect upon the velocity of wave transmission through the region

as does an increase in the density of the medium itself , i.e., it decreases the

velocity. It can be demonstrated that the effective index of refraction n

of such a conglomerate, where the obstacles are flat disks, is given by

i
(
i+S4 (6-12)

where N is the number of disks per unit volume and r is the radius of each

disk.

The photograph of Fig. 6-7 is such an obstacle lens of the converging

type. For Eq. (6-12) to apply, it is necessary that the disk size be some-

what less in magnitude than X/2; for larger sizes, resonance effects occur

and the propagation velocity of the array is affected in a different manner.

As with the conduit type of lens, electromagnetic as well as acoustical

waves may be focused.
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6-8 Attenuation of longitudinal waves in gases. As was pointed out

earlier, the primary reason for the decrease in intensity of sound waves

with distance from the source is the operation of the inverse square law.

With a medium of infinite extent we may consider the propagation of

longitudinal waves to be a nearly conservative process, so that virtually

the same total energy flows per second through any sphere surrounding a

small point source. That this should be exactly true is, of course, impossi-

ble, due to the existence of some attenuation factors operating both within

and at the boundaries of the medium. Whenever the wave encounters a

boundary, as in passing over rough ground in the open, considerable fric-

tional and therefore dissipative effects are to be expected. It is common
knowledge that sound may be heard for a greater distance over water than

over land. This may be due in part to the better reflecting power of the

smooth surface of the water and in part to the lesser importance of viscosity

at this same surface compared with land.

As regards attenuation effects within the body of the gas itself, these

have been shown to be small for travel over moderate distances. It has

already been stated (Section 6-2) that some departure from complete

adiabaticity begins to occur at the higher frequencies, the effect increasing

with the first power of the frequency. Stokes and Rayleigh have made
theoretical studies of the effect of heat radiation between regions of slightly

different temperatures, and also of the losses to be expected due to vis-

cosity within the body of the gas. These two dissipative processes were

also shown to be functions of the frequency, the losses in both cases increas-

ing at the higher values of the frequency. Experiments by Duff * and

Hart ** indicate the presence of such dissipative effects, but their results are

not in good agreement with theoretical computation.

There is considerable experimental evidence that at very high frequen-

cies of the order of 105 to 106 cycles-sec
-1

, there occurs a quite different type

of dissipation, associated with vibrational resonances within molecules of a

polyatomic nature. A number of workers have studied the abnormally

high absorption (and hence disappearance of the energy in the form of wave
motion) of C02 for frequencies of the order of several hundred thousand

cycles per second. Dry air containing an appreciable per cent of C0 2

exhibits this property. In 1929 Sabine reported f a similar effect in air

containing H2 molecules (corroborated by Meyer J and by Knudsen §).

In this case the abnormal absorption occurs at frequencies well within the

* Phys. Rev., 11, 64 (1900). J Zeits. f. techn. Physik., 7, 253 (1930).
** Proc. Roy. Soc. A, 105, 80 (1924). § Jour. Acous. Soc. Am., 5, 112 (1933).

t Jour. Franklin Inst., 207, 347 (1929).
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audible range (2000 cycles-sec
-1 or over). The effect was greatest when

the water molecules constituted about 0.5% of all those present. Con-

siderable theoretical work has been done in connection with this phe-

nomenon. In general, for such absorption to occur it is necessary for the

period of the sound wave vibration to be comparable to the time required

to establish thermal equilibrium between the normal and the vibrating

molecules. This process should be compared and contrasted with the

resonance absorption by gases of certain spectral lines. In this latter type

of absorption, the absorption frequencies are exceedingly sharp as compared

with the acoustic case and, being intra-atomic in nature, they occur at

very much higher frequencies.

6-9 The Doppler effect. The basic principle of the frequency shift

known as the Doppler effect is presented in most elementary textbooks on

physics. In a wave motion taking place in a material medium like air,

there are three fundamental velocities to consider if one is to predict the

apparent frequency as heard by an observer. These are first, the velocity

of the medium um , second, the velocity of the sound source u s ,
and third,

the velocity of the observer u . All of these velocities are measured with

respect to the same set of axes, fixed with respect to the earth. We shall

restrict our attention to the simplest case, where all these velocities are

along the same straight line.

If both the source and the observer are at rest but the medium is moving,

as would be the case in open air if there were a wind, the apparent frequency

f and the true vibration rate/ are the same. If the wind is blowing towards

the observer, the crests in the disturbance will be moving towards him more

rapidly than if the air were stagnant and will be spaced farther apart than in

the case of no air motion. As a result, their rate of arrival at the ear is the

same as if there were no air motion at all. (This will be shown mathemati-

cally in the general formula about to be derived.) In this case, both the

speed of the wave relative to the observer and the wavelength in the medium

are increased, so that /' = /.

If both the medium and the observer are at rest but the source is moving,

there will be a change in the wavelength in the medium. The crests will

be closer together or farther apart, depending on whether the source is

approaching or receding. In the first case, /' will be greater than /; in the

second, it will be less.

If medium and source are stationary but the observer is in motion, the

effect is entirely due to the motion of the observer relative to the wave.

In moving in a direction opposite to that in which the wave is traveling,

the observer encounters the crests more often and /' is therefore greater

than /. If he is moving in the same direction, the crests will arrive at his

ear less frequently and /' is less than /.
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(a)

c + u.

-1

The general equation that takes care of all —

—

c + u
r

possible velocities can be set up by reference

to Fig. 6-8. Let us assume all velocities to

be in the same sense. If only the medium is 5 J
1 ~~ ~~~

a,

in motion (with a velocity um), a crest origi-

nating at the source position (point S in Fig.

6-8a) will in one second travel a distance c -f-

um to point Ai, and there will be / complete

cycles between S and Ai. If at the same time ^_____^

there is a source velocity us ,
this same num- 0' A2

ber of cycles will occupy the smaller distance (b)

8'A'i = c + um - us . Looking now at Fig. fig . 6-8.

6-8b, a stationary observer at point will

receive each second whatever number of cycles are contained in the dis-

tance OA 2 . If, on the other hand, he is moving with a velocity u ,
he will

receive only the number of cycles in the distance O fA 2 = c + um — u .

The apparent frequency /' will then be a fraction of the vibration rate of

the source /, given by

/' = /
C ~\~ Um Uo

C + Um — Us

(6-13)

This equation is in agreement with the qualitative statements made earlier

in this section. It is to be noted that if us and u are both zero, the presence

of um has no effect on the apparent frequency, but that if these velocities

are not zero, the value of um does contribute to the numerical value of the

frequency shift.

6-10 Practical importance of the Doppler effect. Ordinarily, the veloci-

ties us and Uo are small fractions of the normal velocity of sound c. To see

how small us might be and still produce a Doppler effect perceptible to the

average ear, we observe that two notes on the musical scale a half tone

apart bear a frequency ratio of about 16/15. Most listeners can easily

distinguish a difference between these frequencies; a good musical ear can

distinguish quarter tones and less. If we assume um and u in Eq. (6-13)

to be zero and solve for the velocity us to make /'// = 16/15, we find that

us
= ^-qC, which corresponds to about 50 miles-hour

-1
. As a car goes by

on the street, sounding a horn of fixed frequency, there will not only be a

rise in apparent frequency as it approaches, but a drop as it recedes. The

car would therefore be traveling at something like half this speed if the

two frequency extremes are to be in the ratio of 16/15.
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Occasionally sources of waves in air move with velocities approaching

or even exceeding the value of c. This is true in the case of projectiles and

modern aircraft. Projectiles almost always travel faster than the air waves

they produce. This behavior results in a V-shaped envelope of the air dis-

turbance set up, very similar to the envelope of the water waves produced

by a boat. Like the projectile, the boat is traveling faster than the dis-

turbance in the medium. Much has been said in recent years of the diffi-

culties of " piercing the sonic barrier" with airplanes, i.e., traveling at

speeds approaching and exceeding the speed of sound (equivalent to about

750 miles-hour-1). The physical situation may be appreciated if one

considers the behavior of Eq. (6-13) for the case where us approaches c.

This corresponds to an effective zero wavelength, i.e., all crests are coinci-

dent. If an airplane is traveling at exactly the speed c, all irregular dis-

turbances of a pressure type set up in front of the plane, due to its motion

through the medium,; tend to remain for a considerable time in the neighbor-

hood of the plane, contributing greatly to instability and lack of control.

A good deal is known about airplane behavior at speeds greater and less

than the speed of sound; at the speed of sound the situation is most com-

plex and most difficult to analyze.

Some application of the Doppler effect has been made in the field of

measurement. For instance, an experimental device to measure wind

velocities depends for its operation on a utilization of the Doppler effect

associated with a moving source of sound.

Before leaving this discussion, we might inquire into the possible impor-

tance of the Doppler effect in the production of musical sound. Since

most musical sounds are complex in nature and contain more than one

frequency component, the moving surface of the source may be said to be

vibrating simultaneously at a high and a low frequency. The high fre-

quency is being generated by a surface which is sometimes approaching

the observer and sometimes receding from him, this oscillatory motion

being due to the low frequency vibration of the surface. Thus there is

a sort of " intermodulation " effect, to use the language of electronics,

whereby, to the ear, the higher frequency appears to fluctuate slightly at a

rate equal to that of the lower frequency. Such a Doppler effect might

conceivably be a significant source of distortion in the case of a cone speaker

that is called upon to reproduce simultaneously a very large variety of

frequencies. Fortunately, a calculation of the magnitude of the frequency

shift to be expected due to this cause shows it to be well below that detect-

able by the average ear, particularly in the presence of a large collection of

different musical sounds. Other sources of distortion are of far greater

importance, as we shall see in Chapter 11.
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6-11 Transmission of longitudinal waves through liquids. The process

of the transmission of longitudinal waves through liquids (in the bulk) is

identical with that for gases and we have therefore only to insert the

!y~P

proper values of y, P, and p in the equation c =J While the density

of water is about 800 times as great as that for air, the bulk modulus (B is of

the order of 15,000 to 16,000 times that for air. As a result, the velocity

of waves in water is between 4 and 5 times that for air. The quantity y

is nearly unity for water and for many other liquids, so that the isothermal

and the adiabatic moduli are almost the same. (In the neighborhood of

10°C, t is 1.001 for fresh water.) For ether, however, y is about 1.3, so

that in this case (Ra and (B» are quite different. For liquids, as for gases,

7 is slightly sensitive to pressure variations; in the case of sea water, a

variation in pressure from 100 atm to 1000 atm brings about a change in y

of approximately 1%. These pressures are extreme, but the effect is of some

importance in acoustic depth sounding. Because of the relative incom-

pressibility of liquids, the variation of density under varied conditions of

pressure and temperature is of secondary importance as far as its effect on

the speed of longitudinal waves is concerned. Table 6-3 gives the wave

velocity in a number of common liquids.

TABLE 6-3

Liquid
Temperature

CO
Velocity

(cm-sec
-1

)

Alcohol

Ether

Mercury
Petroleum

Water, fresh

Water, sea (36 pts salinity)

12.5

20.0

20.0

15.0

17.0

15.0

1.24 X 10 5

1.01

1.45

1.33

1.43

1.50

6-12 Experimental measurement of c for liquids. Direct measurement

of the velocity of longitudinal waves in water may be made over large

distances. The velocity for fresh water is measured in lakes and rivers and

the velocity for salt water in the open sea. All that is necessary is the

use of electrical timing devices at the sending and receiving ends. As in

the case for gases, a laboratory method for liquids is also desirable; by

such a method liquids other than water may be measured under controlled

conditions. It is possible to use for liquids a modification of the Kundt's

tube method for gases. Instead of using dust particles to locate the nodal

planes in the standing wave pattern, these planes may be located by means

of a vibration detector, such as a microphone, placed against the outside
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of the tube containing the liquid. It is interesting to point out that the

positions of the displacement nodes, or regions of no motion within the

liquid are, as we shall see in the next chapter, positions of large pressure

variations in a standing wave of the longitudinal type. These pressure

variations are transmitted to the wall of the containing tube and so may

be picked up by the microphone. (To ensure a velocity measurement

characteristic of the elastic properties of the liquid itself, the tube walls

must be very thick and fairly rigid.)

In the ultrasonic frequency range, the velocity of longitudinal waves in

liquids has been measured by means of the acoustic interferometer devised

by G. W. Pierce* for use with gases. A quartz crystal is made to vibrate

by electrical means so as to radiate into the fluid compressional waves of a

frequency of 50,000 cycles-sec
-1 or higher. A reflecting plate is placed in

the path of the waves, so that considerable energy is reflected back to the

crystal. The phase of the displacement in the returning wave relative

to the motion of the surface of the crystal depends in part on the total path

of travel of the returning wave. If the reflecting plate is moved towards

and away from the crystal, a position will be found such that the returning

wave strikes the crystal surface with a particle displacement just opposite

to that of the motion of the crystal surface. As a result, the crystal motion

will be significantly limited, the effect being observed as an electrical change

in the circuit driving the crystal. As the plate is moved progressively

towards the crystal, this effect will become critical at positions X/2 apart.

In this way the value of X may be obtained. The electrical frequency of

the vibrations is easy to measure and therefore the velocity c can be com-

puted from the relation c = /X. This procedure is equally well adapted to

the measurement of c in both gases and liquids.

6-13 Attenuation effects in liquids. Since the velocity of longitudinal

waves in water is more than four times as great as it is in air, the wavelength

for any given frequency is greater by the same factor. Therefore the

high and low temperature regions will be farther apart in water than in air

and the temperature gradients consequently smaller. In addition, the

ratio of thermal conductivity to specific heat capacity is much smaller for

liquids, in general, than for gases and so what heat conduction may occur

to attenuate the wave will be much less important for water than for air.

It can be shown also that losses of the viscous type are smaller for liquids

than for gases. For these reasons, longitudinal waves will travel much

greater distances through sea water than through the air. However,

there are other factors that undoubtedly are of major importance. As we

* Proc. Am. Acad., 60, 271 (1925).
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shall see in Chapter 8, longitudinal waves are rather efficiently reflected at

the boundary between water and air (because of the great difference in the

specific acoustic impedance for the two media, poc) and consequently much
of the energy striking the boundary is reflected back into the water. A
similar effect occurs at the bottom of the water layer. As a result, instead

of the spherical divergence of a medium of infinite extent, the energy is

confined to a relatively thin two-dimensional layer. The intensity will

therefore fall off more slowly than with the operation of the inverse square

law. Other factors may accentuate this effect. For instance, it has

recently been discovered that temperature gradients in the Pacific ocean

area operate, through refraction, to confine the energy to so thin a layer

of the sea that underwater longitudinal waves may often be picked up at

distances as great as 1000 miles from the source.

More will be said regarding the transmission of waves through liquids

when we come to the general subject of ultrasonics in Chapter 12.

6-14 Longitudinal waves in solids. This is a very involved branch of

the subject of vibration and of acoustics and will not be discussed in any

great detail in this book. We shall confine our remarks largely to a con-

sideration of isotropic substances, like glass and metals, which are well

annealed and strain-free. In such cases the elastic properties for compres-

sional waves are the same in all directions and a much simpler state of

affairs exists than in the case of nonisotropic substances such as crystals,

and metals which are in a high degree of strain due to mechanical rolling,

etc.

One of the important differences between fluids and solids is that only

the latter offer appreciable resistance to shear. As a result, solid media can

support and transmit vibrations of the transverse and torsional types. In

a solid medium of infinite extent any local disturbance will ultimately give

rise to both longitudinal and transverse waves. (Transverse waves in

solids will be referred to again in Chapter 7.) Considering only the

longitudinal waves set up in an isotropic medium of infinite extent, the

velocity of propagation depends on the density p and on the two elastic

constants X and n (known as the Lame constants), according to the

equation
'

A + 2"
(6-14)-4 >

Po

where the effective elastic factor is therefore (A, + 2/j).

Our chief concern with longitudinal wave propagation in solids will be

for samples of limited dimensions, in particular for bars whose cross-

sectional area is uniform and where such areas have dimensions small com-
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pared with the length of the bar and with the wavelength associated with

the disturbance. In this case the velocity for longitudinal waves may be

expressed in terms of Young's modulus. This may be readily shown by

an analysis very similar to that used for plane waves in air.

Figure 6-9 shows the effect of a small longitudinal distortion upon an

infinitesimally thin slab of a bar. The total force F elongating a bar

originally of length I is

F Y8f,

where Y is Young's modulus, M is the change in length, and S is the cross-

sectional area. (The latter is assumed to change by a second-order

amount during the deformation.) For the thin slab of Fig. 6-9, we have

F = YS
dx

(6-15)

Since the value of F varies continuously along the bar in the presence of

the wave and since it is the difference in the forces acting at the two faces

of the slab which produces its acceleration, we need

-dx

Cross-sectional

area= S

dF
dF d 2

£
n

dx = YSir9 dx. (6-16)
dx dx2

l+dl
By Newton's second law, we have

d2
£ d2

£YS—
2
dx = p Sdx—2

or

53
dp Po dx2

(6-17)

Fig. 6-9.

Since this differential equation is in the wave form, we may conclude that

the velocity of wave propagation c is

(6-18)

To make use of this result, it is not necessary to assume that the bar is

isotropic, as long as we measure Young's modulus for the long dimension

of the bar. It is interesting to point out that since the elastic constant Y
is in general smaller than the effective elastic constant A + 2/* for the case

of a medium of infinite extent, the velocity along the bar is smaller than

would be the case for the same material in large bulk. This is because in
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the latter case there is lateral as well as longitudinal resistance to deforma-

tion. In the case of the bar of small cross section, the lateral resistance is

small (and may be neglected), so that the effective " stiffness" is thereby

reduced.

When the above assumptions of dimensions are not valid, Eq. (6-18)

may not be used. As we shall see later, a vibrating quartz crystal is a

very common source of longitudinal waves of ultrasonic frequency. In

this case, the material is anisotropic and the wave velocity within the

crystal is a function of the orientation of the crystalline axes and also of

the particular shape of the bounding surfaces, and therefore no single for-

mula will suffice.

6-15 The measurement of c as a means of studying the elastic proper-

ties of solids. For isotropic solids there are two important elastic con-

stants, the Lame constants A and n, already mentioned. These constants

are simply related to the velocity of longitudinal waves in the materials

and also to the velocity of torsional waves. Both these types of waves
may easily be set up experimentally and the measurement of these two
velocities enables computation of the important elastic constants. With
the more complex situation that obtains with anisotropic solids, there may
be 20 or more significant constants. These also are related to the various

velocities of wave propagation. The measurement of c is therefore a very

useful tool for determining more fully the nature and behavior of the solid

state.

6-16 Dissipation within solids. Because of the high heat conductivity

of solids, and of metals in particular, dissipation of energy by heat conduc-

tion is of greater importance than for gases or liquids, and for many solids,

the losses due to viscosity phenomena are even more important. Rubber is

a good example. The sources of internal dissipation are, in general, ex-

ceedingly complex for solids. In well-annealed polycrystalline metals, heat

flow of a resonant type accounts for a considerable fraction of the dissipa-

tion, under certain conditions. * In addition, the presence of internal strains

(imperfections in the crystal structure along crystal planes) is important.

All of these effects are usually called loosely " internal friction." Much
experimental and theoretical work has been done in this field. The study

is important from a practical point of view because of its relation to the

well-known failure of metallic structures under the influence of constant

vibration.

* Zener, Phys. Rev. 52, 230 (1937) and 53, 90 (1938). Also Randall, Rose, and
Zener, Phys. Rev. 53, 343 (1939).
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PROBLEMS

1. The phenomenon of dispersion is

observed for longitudinal waves in air only

at very high frequencies. Give the rea-

sons for this statement.

2. Would the velocity of sound waves
in the open air be expected to vary as the

square root of the barometric pressure?

Explain.

3. The velocity of longitudinal waves is

being measured in a closed cylindrical tube

immersed in a temperature-controlled bath.

How will the velocity be found to vary
with the temperature? Compare with the

situation obtained in the open air.

4. An acoustic piston producing plane

waves in open air is oscillating at a con-

stant frequency and with constant am-
plitude. Compare the intensity in the

beam at — 10°C with the intensity at

30°C.

6. The apparent frequency of an auto-

mobile horn when the car is approaching a

stationary observer is 10% higher than

when the car is moving away. There is

no wind. Find the velocity of the car,

assuming it to be constant. Take the

velocity of sound waves in still air to be

331 m-sec-1 .

7. A sound source of frequency 1000

cycles-sec
-1

is mounted on the end of a

horizontal bar rotating about a vertical

axis. The source is 2 feet from the axis.

An observer in the plane of rotation of the

bar hears a periodic frequency shift, due
to the Doppler effect. Assuming he can

detect the presence of two apparent

frequencies if their ratio is 20/19 or greater,

find the minimum speed of rotation in

rpm at which a frequency shift might be

detected.

5. Assuming that the effective velocity

of a wave of large amplitude is given by
c' = c(l + s) [Cv+D/2],

(a) find the value

for the condensation s in air at 0°C and
76 cm of Hg, for which the effective

velocity c' exceeds the small amplitude
velocity by 1 %. (b) Find the correspond-

ing intensity level at which this occurs.

8. A loudspeaker cone is vibrating

simultaneously at the frequencies 50 and
1000 cycles-sec

-1
. If the amplitude of

motion of the lower frequency is 1.0 mm,
find the maximum Doppler shift in the

higher frequency, which might occur, for

an observer sitting directly in front of the

loudspeaker.



CHAPTER 7

STATIONARY WAVES. VIBRATING SOURCES.
MUSICAL INSTRUMENTS

7-1 Introduction. The fundamental relations for plane and for spheri-

cal waves developed in Chapters 2 and 3 have assumed that a disturbance,

once set up, travels out from the source an indefinite distance. This pic-

ture of a medium infinite in extent is useful for any fundamental descrip-

tion of the physics of wave propagation since, at any one point in space,

we are concerned with waves traveling in one direction only. For sound

sources radiating into the open air, and with few obstacles to reflect or

scatter the energy, the medium may be considered virtually infinite in

extent. However, when sound waves strike hard, relatively rigid struc-

tures, an appreciable fraction of the incident energy may be deflected and

perhaps returned in the direction of the source. In the region where this

occurs there will be two wave trains moving in opposite directions, each

contributing to the deformation of the medium.

Under certain conditions this situation may give rise to stationary or

standing waves, with a whole new set of features quite foreign to waves of

the unidirectional type. In this case the "pattern" 'of the deformation in

the medium remains fixed in space, with no evidence at all of propagating

crests or troughs. It is with this general phenomenon that we shall be

mainly concerned in this chapter.

Stationary waves may occur in any medium having definite boundaries.

In air, such waves may be of primary importance within a room, where the

medium is confined by the surrounding walls. Wave reflection, and the

consequent production of a standing wave pattern, may sometimes take

place without an actual change of medium. This is the case when waves

traveling down a cylindrical pipe reach an end open to the surrounding air.

In this case the reflection is associated with the change in the acoustic

impedance as the wave passes from the region within the pipe to the region

of free space beyond it. This phenomenon is very similar to that taking

place in an electrical transmission line whenever the line characteristics

change abruptly and we shall have more to say about it later.

Sound, musical or otherwise, originates in many cases from the vibration

of some solid of limited dimensions, such as a stretched string, a metallic

bar or plate, etc. (A few sources, like the organ pipe and the siren, obvi-

ously do not fall into this classification.) These elastic solids are set into

vibration by deforming the material either by a direct contact force or, as

in the case of sources like the radio loudspeaker cone, by forces of an electro-

151
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magnetic or similar nature. As we saw in Chapters 2 and 3, a deformation

of an elastic medium (in the earlier discussion a gas) gives rise to a wave
disturbance traveling with a speed determined by the elastic and inertial

properties of the medium. One would expect that waves of some sort

would follow the deformation of a stretched string, an elastic plate, or the

like, these waves moving within the material of the solid itself. Such

waves do occur and in the case of solids may be either of a longitudinal or

of a transverse type. In either case, these disturbances are sure to be
reflected at the boundaries of the solid, so that the conditions are right

for the production of stationary waves.

Stationary waves are inevitably present in vibrating sound sources

whose rigidity is anything short of the infinite rigidity assumed for an
ideal acoustic piston (only at low frequencies can any practical source be

assumed to be equivalent to an acoustic piston). In the general subject of

the vibration of extended bodies (rather than of particles), the variety of

standing wave patterns that may occur is of considerable interest for its

own sake. The study of these patterns is also important, however, be-

cause of the part they play in the radiation of sound waves by such a

vibrating body. For any one variety of standing wave in the sound source

there will be a particular set of surface motions, these surface motions

being, of course, the cause of the longitudinal waves in the air. In this

way the whole character of the resulting sound waves will be significantly

affected by the wave motion within the source itself. Waves in the source

and waves in the outside medium are intimately connected.

The transverse motion of a stretched string furnishes the simplest ex-

ample of waves in a solid having fixed boundaries, since a string can be

considered a body of one dimension only and since the stresses in a string

are of a particularly simple type. We shall consider first the physical

properties of the string that make possible wave propagation. Later we
shall investigate the effect of reflection for a string of limited length, lead-

ing to the production of stationary waves. The stationary wave equations

will prove very useful in the discussion of vibrations of strings and of air

columns. While the physical picture is different for air columns, the

mathematics of string vibrations may be used with very little modification.

7-2 The ideal string. Our ideal string is of uniform mass per unit

length and is under tensile stress only, even when deformed. This implies

that the string is perfectly flexible, so that no bending moments are ever

called into play. The particles of the string are free to move in a direction

transverse to the long dimension of the string under the action of restoring

forces that are due, as will be seen presently, to the inclination of the string
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on either side of such particles. (Any longitudinal motions of the particles

may be ignored in view of the great stiffness of the string for deformations

of that type.) The extent of the transverse displacement of any string

particle will be assumed small enough so that the tension may be considered

to remain constant in magnitude while the motion is taking place. No
forces of a dissipative nature exist.

7-3 The differential equation. We shall assume, as we did for plane

waves in air, a very general type of deformation. Figure 7-1 represents

the particular shape of the string in some

local region at a given instant of time.

A segment of the string of differential

length dx is acted upon by two forces

only, the tensions F t at either end. These

forces will not, in general, make the same

angle <f>
with the ic-axis, but because of

the curvature of the string will differ by

a small amount as shown. As a result,

there will be a small net force in the

transverse or ^/-direction. By Newton's

second law, we have

Fig. 7-1. Essential geometry for

the deformation of an ideal stretched

string.

F t sin (0 + dcf)) — F t sin <f>
= aidx

where ai is the mass per unit length of the string.

The net force on the left may be rewritten

dt2
' (7-1)

Ft sin (</> + d<f>) - Ft sin = Ftd(sw. 0) =* Ft
— (sin cf>) dx. (7-2)
dx

Remembering that the angle
<f>

is never very great if the transverse string

displacements are small, we may, with negligible error, replace sin
<f> by

dy
tan 0. Since tan <f>, the slope, is equal to -r-> the net force on the string

segment may be written

d d d2v
Ft — (sin 0) dx = Fj — (tan <f>) dx = F t - 2̂

dx.

Equation (7-1) then becomes

*s* aidx
dt2

or

S/^2^,
dt2 dx2 (7-3)
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where

-'• (7-4)

7-4 The solution. Equation (7-3) is identical in form with the equation

for plane waves in air. We may therefore write down at once its general

solution,

y = f(ct ± x), (7-5)

where y in this case refers to a transverse displacement of a string particle,

whereas £ in the plane wave solution specified a longitudinal displacement,

The interpretations of Eqs. (2-13) and (7-5) are identical as far as wave

propagation is concerned. Any local deformation of the string will imme-

diately start two waves, one moving in the +£ direction, corresponding to

y = f(ct — x), and one moving in the — x direction specified by y = f(ct + x).

(Functions of the form f(x ± ct) are also solutions.) The speed of travel

will be the same, i.e., c = VF t/ai. If the string is very long, so that possi-

ble reflection at the ends need not be considered, there are no restrictions

placed upon the form of the function in Eq. (7-5) as long as it contains the

argument (ct ± x). The disturbance may be periodic but it is not neces-

sarily so.

The graphs of Fig. 2-3 may also be used for the case of a string, where

they have the following particularly simple interpretation. If we plot in

cartesian coordinates the string displacement y as a function of x at any

one fixed instant of time, the resultant graph will be a virtual photograph

of the string, with the wave shape "frozen" upon it. The graph is the

string shape. In the case of longitudinal waves, it will be remembered, a

vertical ^/-coordinate represented a particle displacement along the hori-

zontal x-direction.

7-5 The string of limited length. For a string of limited length our

solution must satisfy the conditions imposed at the boundaries, as well as

the differential equation. Let us suppose that at the position x = the

string is attached to a support of infinite rigidity. (The rigidity of actual

supports is often sufficiently great to justify this assumption.) The

boundary condition at this point is that y must be zero at all times. Equa-

tion (7-5) may therefore be written

y = fl (ct + x) +f2(ct- x), (7-6)

where /i and /2 are not necessarily the same functions. If, however, the

functions f 1 and/2 are taken to be of the same form but of opposite sign, we

may write, for the point x = 0,

= f(ct) - j(cf). (7-7)
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This is an obvious identity and the boundary condition is satisfied. The

motion of the rest of the string will then be given by

y=f(ct + x) -f(ct-x) (7-8)

implying two wave trains of exactly the same waveform traveling in opposite

directions.

7-6 Reflection at one end of a string. The graphical interpretation of

Eq. (7-8) is interesting and important. From a mathematical point of

view, the two wave trains exist to the left of the point x = as well as to

the right. Physically, of course, there can be no string vibrations except

where x is positive. In Fig. 7-2a are drawn the two oppositely moving

wave disturbances represented by f(ct + x) and -f(ct - x) at some par-

ticular time t. In the figure the solid line represents the disturbance

moving to the left and the broken line the disturbance moving to the right.

Only to the right of the support do these disturbances have any real signifi-

cance. To satisfy the boundary condition it is necessary that the ordinates

due to the separate disturbances always be equal and opposite at x =

(from Eq. (7-7)). At, other positions along the string this is not at all

necessary, although at certain instants of time it may be true. The actual

displacement of any particle of the string at any position x will be the

algebraic sum at that instant of the particular ordinates associated with

Fig. 7-2. Reflection of transverse waves at a rigid boundary.
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the separate disturbances, whatever they may be. In Fig. 7-2b is shown

the graphical sum of the solid curve and the broken curve for the time

chosen. This sum curve represents the actual shape of the string.

The situation to the right of the string support may be summarized as

follows. A train of waves is approaching the support and a second train

of exactly the same wave form is simultaneously moving away from the

support. This is the ordinary notion of reflection. In this case, where the

support is taken to be completely rigid, the reflection is perfect. The
energy in the reflected disturbance must then necessarily be identical to

that in the incident disturbance. The maintenance of the wave form

after the reflection is consistent with such a conservation of energy.

The process of reflection might have been approached somewhat differ-

ently. It is possible to follow along the string a small pulse of a highly

localized nature moving towards the support position x = 0.' As the

deformation reaches the support, causing the string to pull, say, upward

upon it, the support (being completely unyielding) reacts upon the string

in such a way as to throw the string particles downward. In this way the

arriving and departing pulses may be seen to involve ordinates of opposite

algebraic sign at the support position, as was apparent from our more

formal mathematical analysis. The dynamics of the situation at the

support, as far as the string particles are concerned, is exceedingly difficult

to follow in any quantitative way. It therefore seems preferable to use

the approach of the preceding paragraphs. This is one instance, not at

all uncommon in physics, where physical reasoning must bow to formal

mathematics as the more useful tool.

If the string support is not infinitely rigid, the reflection process is modi-

fied. Obviously, we may no longer use the boundary condition that y is

at all times zero at the position x = 0. We shall have more to say later in

this chapter on the effect of yielding supports; this matter is also related

to wave absorption at boundaries as discussed in Chapter 8.

7-7 Simultaneous reflection at both ends of a string. For a string of

limited length, reflection will, in general, take place at both ends. It is this

double reflection that makes possible, indeed necessary, the periodic motion

of a string, so important to stringed instruments as sources of musical

sound. Consider a pulse of some sort near one end of the string, traveling

along it to the other end and there being reflected back towards the first

end. The total time T for the pulse to return to its starting point will be

2l/c, where I is the length of the string and c is the velocity of wave propa-

gation. After a time T, therefore, a particle of the string will repeat its

original motion. In this manner the motions of all particles of the string
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will necessarily be periodic. It will turn out that with certain initial

deformations of the string the period of its motion may be less than 21/

c

but it is never greater. In the next section we shall see just what the period

of the string motion may be, consistent with both end conditions.

7-8 Vibrating string fixed at both ends. In view of the expected peri-

odic motion of the string, let us take as the solution to the wave equation

two periodic functions of the same form but of opposite sign, in order to

satisfy the boundary condition at x = :

y = ym sin y {ct + x) + a\ - ym sin I y (ct - x) + a\, (7-9)

where ym is the amplitude of motion in each of the two waves and a is a

phase angle. Equation (7-9) may then be rewritten

y = ym sin K2irct
. \ . 2ttx~] . r/2wct . \ 2wx]

Expanding the sines of the sums and differences of two angles and collecting

terms, we find that

y = 2ym sm(
2
f)coS (?f + a). (7-10)

At this point we may introduce the boundary condition for the right-

hand end of the string. Since this end is fixed, when we insert in Eq.

(7-10) the value of x = I, it is necessary that y remain zero for all values

of the time. For this to be true, the value of X must be restricted by the

relation

2tI— = mr
A

or by

X = -, (7-11)
n

where n is any integer. When the value of X given by Eq. (7-11) is inserted

into Eq. (7-10), we obtain

y = 2ym sin (y x) cos f-y- 1 + a
J-

(7-12)

This is one form of the stationary wave equation. It applies in this case to

a string stretched between rigid supports, but with different variables it

may be used for other vibrating bodies as well, as we shall see later, provided

that the boundary conditions are analogous to those assumed for the string.
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7-9 Interpretation of the stationary wave equation. According to

Eq. (7-12), there are an infinite number of possible periodic motions,

depending on the value of the integer n. The frequencies are restricted to

the values given by
nwc

' = ir = ! = !>& *-*>

and hence constitute a harmonic series of the Fourier type. As with the

simple progressive type of wave, y is a periodic function of both x and t, but

in this case there is no evidence of traveling crests and troughs. The

amplitude of motion of the different particles of the string varies along the

string with the value of x. For positions where (nir/l)x is an even integral

multiple of ir/2, the amplitude is zero, since the sine function in Eq. (7-12)

is zero. These points are called the nodes. Between the nodes, at posi-

tions where (rnr/l)x is an odd integral multiple of tt/2, the amplitude is a

maximum and is equal to 2ym . These points are called the antinodes or

loops.

Between an adjacent node and antinode the string particles have ampli-

tudes intermediate between zero and 2ym . On opposite sides of a nodal

position the particles are, at any one instant, moving in opposite directions.

This may be seen by examining the algebraic sign of the expression

sin l-y x) in the neighborhood of a value of x for which the angle is some

even integral multiple of tt/2 (a nodal point) . If this sign is positive on one

side of a node it will, at the same instant, be negative on the other, indicat-

ing a relative phase of 180° for the particle motions.

The distance between the nodes (or the antinodes) will depend on the

period of vibration and hence on the value of the integer n. Let us suppose

the integer n to be unity. Since a node will occur at intervals along the

string whenever the angle (nirx/l) changes by an amount it, the correspond-

ing change in x will be equal to I. Hence for n = 1 , the spacing of the nodes

is the length of the string itself, i.e., there are only two nodes, at the ends.

From Eq. (7-11), the length of the string will be A/2. This is the simplest

mode of vibration, where //, the so-called " fundamental" frequency, is

given by

/, = | =
i

(7-14)

If n = 2 (/ = 2ff), the angle (nirx/l) will increase by tt when x increases by

an amount 1/2, and there will be a node in the middle of the string as well

as at the ends. The length of the string is then equal to the wavelength.
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Fig. 7-3. Several possible stationary

wave patterns for a string stretched

between rigid supports.

If n = 3, the change in x need be

only 1/3, etc. The various possible

patterns for the first few integral

values of n are given in Fig. 7-3.

The 180° phase relationship men-

tioned above is also indicated.

By far the clearest idea of the

nature of stationary waves is gained

if a vibrating string is viewed under

stroboscopic light. Such a light

source is regularly periodic in char-

acter and the electrical circuit is

usually such that the frequency may
be smoothly adjusted over quite a

wide range. If the illumination fre-

quency is set to be the same as

that of the string while the latter

is executing one of its possible modes

of vibration as given by Eq. (7-12), the string will appear to stand still,

since it will be visible only when its various particles are in the same

position in space. If the illumination frequency is slightly higher or lower

than that of the string, the latter will appear to vibrate very slowly, in

the manner peculiar to stationary wave behavior. The successive changes

in shape, the different particle amplitudes, and the phase relationships may

then be clearly seen. (Similar effects may occur when the ratio of string

frequency to illumination frequency has certain values differing from unity.)

It is regrettable that no such simple demonstration is possible with

unidirectional waves along a string, since with a finite length the pattern

is also complicated by reflections.

7-10 Other end conditions. Both ends free. When stretched strings

are used on musical instruments, the slight yielding of the supports is an

important factor in the radiation of musical sound by the instrument as a

whole. From the standpoint of the possible modes of vibration of the string

itself, however, the assumption of complete rigidity at the points of attach-

ment predicts a set of stationary wave patterns in close agreement with

experiment. The quite different boundary condition that one end of the

string be completely unrestrained is of interest. Such a boundary condition

is never encountered in musical instruments, since it would then be impos-

sible to maintain any tension in the string. We consider this highly artifi-

cial situation only because of its mathematical importance in the later
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discussion of stationary air waves in pipes. As mentioned earlier, the

mathematics developed for the string is directly applicable to the resonance

behavior of air in pipes. Such columns of air may be considered "free"

to move at an open end, the elastic factor in this case being present along

the air column without the necessity for any "pull" at the ends. We con-

sider the free-end condition for the string because it is easier to observe

than in the air column.

A simple way of demonstrating the free-end condition for a body like a

string (and therefore observing its physical effect experimentally), is to

hang a heavy flexible rope in a vertical position. The lower end will be

virtually unrestrained and the tension will be maintained by the weight of

the rope itself. The transverse vibrations of such a vertical rope are

affected in an important way by the fact that the tension is a variable up
and down the rope, being a maximum at the top and approaching zero at

the bottom. All transverse waves will therefore travel with a speed which

is a function of the position along the rope. Despite this major complica-

tion, the condition at the bottom is that of a "free

end. " If the upper end is moved back and forth with

a periodic transverse motion, there will be some fre-

quency or frequencies which will set up standing waves

along the rope. A close observation of the lower end

will reveal the physical effect of the free-end condition.

The particles of the rope will there have a maximum
amplitude of motion (as compared with particles farther

up the rope). The motion of a heavy rope will usually

be slow enough to show that the slope of the wave shape

close to the lower end is zero, i.e., the end portion

always remains vertical and therefore parallel to the

long dimension of the rope (Fig. 7-4). Using y and x,

respectively, to specify the transverse and longitudinal

directions relative to the rope, the mathematical

boundary condition at a perfectly free end is that dy/dx

must always be zero, rather than that y must be zero. *

Fig
mode

Simplest

vibration

7-4,

of

of a heavy rope hung
vertically from a
rigid support.

* The mechanism of free-end reflection may be considered somewhat as follows.

At a rigid boundary the transverse force acting on the support upon the arrival

of an incident wave or pulse is proportional to the slope of the string just in front

of the boundary (it is proportional to F t tan <f> for small slopes). If we imagine

the mass and stiffness of the support to decrease and approach zero, this transverse

force must go to zero also. Since T is assumed constant, the slope must therefore

approach a zero value at the boundary as we approach the completely free-end

condition.
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Let us return to the general solution for waves along a string (Eq. (7-5)).

If we suppose that the end at x = is free, we must in this case select two

functions / which are the same in form and of the same algebraic sign. For

if the equation for y is then written

y = f(ct + x) + f(ct-x), (7-15)

it is seen that upon performing the differentiation dy/dx and setting x = 0,

we obtain

^ = f(ct) - f'(ct) = 0. (7-16)
ox

The boundary condition is thus seen to be satisfied. If a periodic form for

the two waves is chosen as in Eq. (7-9), but with a positive sign in front of

the second part of the solution, it is easy to show by the same trigonometric

process that y may be written

y = 2ym cos f-y-J sin ( -y- + oA' (7-17)

As in the procedure for the two fixed ends, we now introduce the condi-

tion that the end at x = I is also completely free. If we differentiate y par-

tially with respect to x, we have

dx
= -2^fsin(^)sin(^ + «) (7-18)

Inserting the value x = I, we see that for dy/dx to be zero for all values of

the time, the following relation must hold

:

2ttZ— = nir
\

or

X = -, (7-19)
n

where n is any integer. This will be recognized as exactly the same restric-

tion upon wavelength as was imposed by the condition that both ends be

fixed. Therefore the possible frequencies of vibration are exactly the same

as for fixed ends and Eq. (7-13) applies equally well for either set of condi-

tions. Inserting X from Eq. (7-19) into Eq. (7-17) , the complete stationary

wave equation may be written

y = 2ym cos fy xJ sin l-y t + a) • (7-20)
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Fig. 7-5. Several possible stationary-

wave patterns for a hypothetical

stretched string whose ends are com-
pletely free to move transversely.

Fig. 7-6. Several possible stationary

wave patterns for a hypothetical

stretched string fixed at one end and
perfectly free to move at the other.

While the possible frequencies are the same as for the string with fixed ends,

the stationary wave patterns do look different, as seen in Fig. 7-5 (compare

with Fig. 7-3). At the free ends there are always antinodes. The simplest

mode of vibration involves a wavelength which is just twice the length of

the string, with a single node at the center.

7-11 Vibrating string, one end fixed, one end free. This particular set

of end conditions, like the case just discussed, where both ends were free,

is of interest primarily in connection with air waves in pipes. Let us

assume that the left end is fixed and the right end is free. In this case the

stationary wave equation becomes

y = 2ym sin

where n' is an odd integer only,

given by

/ =

(f;Mf-
c
*+«)> ^

The possible frequencies of vibration are

nc
(7-22)

Each of the higher modes of vibration is an odd multiple of the fundamental

lowest frequency. In Fig. 7-6 are shown a few of the simpler standing

wave patterns.



7-12] INITIAL CONDITIONS 163

7-12 Initial conditions. Throughout the previous discussion we have

been discovering possible modes of vibration. This does not at all imply

that a string necessarily executes any particular one of these modes, nor

must all modes exist simultaneously. Just how the string will move is

determined by the initial way in which the string is deformed, as well as by

the special boundary conditions for certain positions along x. In other

words, since y is a function of both x and t, we must satisfy boundary con-

ditions for both variables.

It must be freely admitted that to state precisely the initial time condi-

tions for the vibration of strings on musical instruments is a very difficult

matter, impossible in most cases. The most common modes of excitation

are plucking, as in the banjo, the harpsichord, and occasionally the violin;

striking, as in the case of the piano; and bowing, a process peculiar to the

violin and related instruments. The initial conditions are progressively

more complicated, in that order. While numerous analytical statements

have been attempted, few may be said to accurately describe the situation.

In addition, the project hardly seems worth-while from a practical point of

view since, as we shall see presently, the resonance vibrations set up in the

body of a musical instrument color the quality of the radiated sound fully as

much as do the vibration properties of the string itself. In a few cases,

however, the initial conditions are fairly simple. We shall briefly consider

one such case, to indicate the procedure.

It will be noted that a phase angle a was included in Eq. (7-12) for the

vibrations of a string fixed at both ends. Let us consider to begin with

that all possible modes may exist simultaneously as well as separately (by

the superposition principle). Then we may write for y,

y = 2[^» sin
(J

z) cos
(?f

t + «„)] (7-23)

where A n and an are the amplitudes and phase angles, respectively, asso-

ciated with each mode. This equation may be put in the form

^r rnr /, nirc . nirc Yl ,_ .

y = 2i sm ~T x
I
o« cos ~T t + an sin -j- t) > (7-24)

where

an = — A n sin an 1

and (7-25)

bn = A n COS an .
J

The problem now is to determine coefficients of the form an and bn in such

a way as to completely satisfy the initial conditions. This process consti-

tutes essentially a Fourier analysis, for at the time t = 0,
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y
t o

= 2(6» sinT x
}

(7_26)

If, in addition, an initial velocity condition is imposed,

y
!=o

= 2(«»— em-j-xj. (7-27)

If we can now state yasa function of x, and 2/ as another known function

of x at the time t = 0, the coefficients in the cosine and sine series of

Eq. (7-24) can be determined by use of the formulas developed in Chapter 1.

We then have the complete picture for the subsequent motion of the string.

Example. The initial conditions for a plucked string can be stated rather simply.

Assume that just before release the string is given the initial shape shown in Fig. 7-7.

Let us suppose, as in the diagram, that the string is plucked at the center. Then
at the time t = we may express the function

— x, for < x < -,

I

'

2

and

y = — (I — x), for - < x < I, Fig. 7-7. The geometry for a string
2 2 plucked at the center.

where I is the length of the string and h is the displacement at the center. In

addition, let us picture the string as released from a state of complete rest, i.e.,

at time t = 0, y = 0, everywhere on the string. This means, from Eq. (7-27),

that all the coefficients of the form an must be zero, so that the sine series (Eq.

7-24) must be completely missing. To determine the coefficient of a typical cosine

term, we make use of Eq. (7-26) and Eq. (1-16), that is,

8h . nir

Plainly, the coefficients are zero for even values of n and consequently only the

odd harmonic multiples in the harmonic series will be present after the string is

plucked. Their amplitudes as determined from the expression above for bn turn

out to be in the ratio of— ,— ,—, etc., diminishing rapidly as the frequency

rises. W w W
7-13 Other initial conditions. General considerations. The example

just given will suffice to show the general procedure for an analysis of this

type. Since for most modes of excitation the lowest frequency involves the



7-13] OTHER INITIAL CONDITIONS 165

greatest amplitude, it will usually be the most prominent among the

various string vibrations and will, in general, be the most prominent to

the ear and so determine the characteristic " pitch. " The amplitudes of

the higher harmonics, so important to the quality of the emitted sound, are

completely determined by the mathematics. It should not be concluded,

however, that the intensity ratio as observed by the ear will bear any simple

relation to these relative amplitudes. The vibration of the body of the

musical instrument has an enormous effect upon the radiated sound, as we

shall see later in the chapter, and alters radically the harmonic content in

the transmitted sound wave.

For a string which is struck, as in the case of the piano, the initial condi-

tions are more complicated, because of the added forces exerted by the

hammer over a finite time. To represent this situation analytically is very

difficult if one desires to take account of the transient period of the hammer

contact. In addition, with a sharp blow (as indeed also with a violent

plucking) the small amplitude vibration assumed for the string is easily

exceeded and, as for waves in air, different portions of the disturbance will

travel with different speeds. One thing may be noted, however, from the

result for a plucked string. Any harmonic whose stationary wave pattern

involves a node at the point of initial plucking or striking is always absent,

e.g., the even harmonics were not present in the problem just presented.

A piano string is struck by the hammer at a point about | of the distance

from one end. This discourages the 7th and 9th harmonics, whose combi-

nation is particularly dissonant to the ear.

A further effect of the hammer is associated with the softness of the felt

face. Since the blow is made less abrupt and is less highly localized

because of the felt, the harmonics above about the 6th are reduced in

prominence in the general interests of tone purity. The hardness of the

felt in pianos differs considerably and corresponding quality differences

in tone are readily recognizable.

Parenthetically we might stress the point of view of the physicist in

contrast to the opinion of many musicians as to the exact role played by

the performer in determining the quality of a single note struck on a piano.

Jeans and others have pointed out the purely mechanical linkage between

the key and the hammer, whose characteristics are largely beyond the con-

trol of the musician. As a matter of fact, oscillograph records of notes pro-

duced by a musician's finger and by the falling of a weight (where the

strength of the blows is identical) are practically indistinguishable. The

pianist, of course, must possess many technical skills relating to the manner

in which a sequence of notes is played, but to the physicist the existence of

any such skill in the striking of a single note is pure fiction.
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7-14 Bowing. Relaxation oscillations. The excitation of a violin

string by bowing is too complicated to discuss in any mathematical detail.

As the gut is slid over the string, its rosin-coated surface alternately holds

to the string and then lets go. As a result, a disturbance of a periodic

nature travels down the string and stationary waves are quickly set up.

The phenomenon occurring at the portion of the string in contact with

the bow is mainly a function of local elastic and frictional forces only.

Nevertheless, the vibrations occurring over the string as a whole are of

frequencies characteristic of conventional free string motion, which indi-

cates that the inertial as well as the elastic properties of the string must
enter into the total phenomenon. The bow, serving as a driving agent,

merely supplies enough energy, through a mechanism involving rather

weak coupling, to maintain the string vibrations at constant amplitude.

Raman* has been able to develop a reasonably satisfactory mechanical

theory of the bowing process, although not complete in all details.

The phenomenon occurring at the contact point of a bowed string is of

some importance outside the field of musical sound. Vibrations of this

general type are called " relaxation" vibrations and, as has been suggested

above, are of a frequency dependent only upon elastic and frictional factors,

with inertia often playing a very minor part. For there to be the alternate

slipping and nonslipping referred to, the maximum static friction must be

regularly exceeded, with short intervening periods during which a lower

sliding friction is in operation. A frictional force which periodically

changes sign will, mathematically speaking, bring about such a state of

affairs. Van der Pol f and others have studied equations involving friction

of this type and have obtained solutions in approximate agreement with

experiment. The period of motion, as so determined, is proportional to

the ratio of a frictional coefficient to an elastic constant. Many examples

of this type of vibration may be cited. The squeaking of a door hinge, the

flapping of a flag in the wind, and the scraping of chalk on a blackboard

are a few. The operation of the so-called sweep circuit in an oscilloscope,

where a capacitor alternately charges and discharges, is an example of a

relaxation oscillation of an electrical nature. In this case the period of

the oscillations depends on the ratio of capacitance to electrical resistance.

7-15 Vibration of membranes. Stationary waves in two dimensions.

A membrane may be considered as a two-dimensional flexible string. It

consists of a thin sheet of elastic material under uniform stress in a direction

* Ind. Assoc, for Cult, of Science, 15, 1-158 (1918). Also Phil. Mag. 38, 573-581

(1919).

I Phil. Mag. 2, 978 (1926); also 6, 763, (1928).
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tangent to its surface and of uniform mass per unit area. A circular

drumhead is essentially a membrane, in this case held bound at its circum-

ference. The mathematics of a square membrane, although this shape is

seldom used, is simpler than that of a circular membrane. In cartesian

coordinates, the differential equation for the motion of a membrane may
be written (almost intuitively) as

dt2 dx 2 r
dy*J>

(7-28)

where x and y are measured in the plane of the membrane and z is a dis-

placement perpendicular to this plane. The quantity Fs is the stress

across unit length in the plane of the membrane (defined as for liquid sur-

face tension) and as in this case is the mass per unit area.

If periodic deformations having circular symmetry are assumed (and

this will obviously be the case when a drumhead is struck initially at the

center), this equation may be transformed to read

d 2
z . 1 dz

t

. _—
2 + -— + Az = 0,

drl r or
(7-29)

where r is a radial coordinate and A is a constant related to the inertial

and elastic factors as well as to the frequency of any simple harmonic

motion which may take place.

The solution of the differential equation (7-29), assuming a steady state

symmetrical stationary wave pattern, must, of course, take account of the

boundary conditions. For a drum, z must be zero when r is equal to

the radius of the drumhead. We will simply summarize the results of the

mathematics. The possible frequencies do not constitute a harmonic

series. The numerical relations between the first few higher frequencies

and the fundamental frequency are given in Table 7-1.

TABLE 7-1

Frequency /i h /. h h /e

Relative frequency 1.0 1.59 2.13 2.29 2.65 2.91

In Fig. 7-8a, b, c are shown the instantaneous shapes, together with the

nodal lines for three symmetrical modes of vibration. For comparison,

Fig. 7-8d shows a possible mode of vibration which does not have circular

symmetry. Such a mode might be excited by striking the drumhead off-

center.
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/ /

(a) (b)

(c) (d)

Fig. 7-8. A few of the possible modes of vibration of a stretched circular membrane.

Arrows point to nodal lines. (After Morse)

The prominence and number of the possible modes of vibration which

will exist with any practical kind of excitation will depend on the initial

conditions, just as for a string. To determine the exact nature of the

vibration, the procedure is similar to that employed for the string, although

somewhat more difficult. Drumheads are often stretched over the tops of

rigid airtight containers (as, for instance, the kettle drum of the orchestra)

and the presence of the trapped air significantly increases the stiffness of

the drumhead and hence raises the natural resonance frequencies.

7-16 Longitudinal stationary waves in bars. We have seen in Section

6-14 that plane longitudinal waves travel down a bar of uniform cross sec-

tion with a velocity c =VY/Po . This velocity is quite independent of

frequency, as is the case with waves of small amplitude in air and with

transverse waves of small amplitude along a stretched string. Since the

differential equation for the waves in a bar is identical in form with the

equation for waves along a string, we may take over the solution and write

£=K*t±x).

For a bar of limited length, one may impose boundary conditions at the

ends which are completely analogous to the end conditions for the string,

remembering that the particle displacement £ for the bar is longitudinal.

This will lead quite naturally to a stationary wave equation of the same

type as Eq. (7-12). If the bar could be clamped between infinitely rigid

supports, the particle displacement £ at the ends would always be zero.

Equation (7-12) would then apply exactly, except that y would be replaced
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by £. The possible periodic motions are then given by Eq. (7-13), that is,

j. nc

where c in this case is VY/p .

Since a solid bar is itself so rigid, it is difficult to provide supports of

greater rigidity, and hence the end conditions assumed above are hard to

realize in practice. The free-end condition may be achieved quite readily,

however, by supporting the bar on strings placed some distance in from the

ends. The stationary wave patterns given in Fig. 7-5 then apply equally

well here. To reduce the energy dissipation at the supports to a minimum,
the strings should be located at the nodes. For the simplest mode of

vibration, where there is a single node at the center, a knife-edge clamp

should be used (as in Kundt's original experiment, Fig. 6-1).

The resonance frequencies associated with longitudinal waves in a bar

constitute a harmonic series, as they do for the string. Such frequencies

are always much higher for the bar, however, since the velocity of wave
propagation is much greater than for waves along a string. For a metal

like steel, Y is 2 X 1012 dynes-cm-2
, p is about 7.8 gm-cm-3 , and therefore

c = VF/po becomes 5.0 X 10 5 cm-sec-1 . For a stretched string on a

typical musical instrument, c might be of the order of 104 cm-sec-1 . Since

/ = c/2l for the fundamental mode of either the string or the bar (ends

either both fixed or both free), the lowest frequency to which a bar will

resonate might be roughly fifty times that of a string of the same length.

7-17 Transverse waves in bars. Bars are more easily set into trans-

verse than into longitudinal vibration, since they are more yielding to defor-

mations of that type. Most of the annoying vibrations in the frame of a

car, an airplane, etc., are of this kind. Vibrations of the transverse type

are of some importance in the production of

musical sound, particularly in instruments having

reeds, like the saxophone, and in the xylophone,

whose bars are struck transversely.

Unlike the ideal string, a bar resists bending.

Therefore evenwithout longitudinal stress, flexure

will give rise to restoring forces. These forces

are of two general kinds over any cross section

of the bar, as indicated in Fig. 7-9. There is a

transverse "shearing" force F Sh and a couple or

" bending moment" Mb, the latter being the

result of the compression and the elongation of

opposite sides of the bar. The shearing force and

Fsh+dFsh

|dx

( Mb+dMt

FSh

Fig. 7-9. Forces and
moments acting on a thin

slab of differential thickness

in a bar which has been
deformed.
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the bending moment will, in general, vary along the bar in the presence of a

deformation, as indicated in the figure. On the basis of this illustration one

may express Newton's second law for the transverse translation and for the

rotation of a thin slab the area of whose face is the cross-sectional area of

the bar. We shall not go into the details of this analysis, but shall merely

summarize the results. * One may finally obtain a differential equation relat-

ing the transverse displacement y for any point on the bar to the position x

along the bar and to the time t. This equation, for small amplitudes, becomes

i94?/

=0, (7-30)
dt2

+.A'
dx 4

where A' is a constant related to the elastic and inertial properties of the

bar and to the shape of the cross section. This is a fourth order differential

equation and its solution presents difficulties, some of which may be best

surmounted by the use of graphical methods. Upon examination, the

solution implies the possibility of wave motion, but the speed of travel of

these waves turns out to be a function of the frequency, higher frequencies

traveling faster than lower ones. For a bar of limited length, stationary

waves are possible at certain discrete frequencies. The higher frequencies

do not bear any simple integral relationship to the fundamental frequency

and hence do not comprise a harmonic series. Table 7-2 gives the rela-

tionships for a few possible modes (assuming free-end conditions).

TABLE 7-2

Frequency /i h h n

Relative frequency 1.0 2.76 5.40 8.93

Number of nodes 2 3 4 5

Node Node
The simplest mode involves the ex-

istence of two nodes, as indicated in

Fig. 7-10. The wooden bars of the

xylophone are supported horizontally

on two strings located at these nodal

points, a little less than \ the way in Fig. 7-10. Simplest mode of vibra-

from the ends (actually a fraction equal tion of an elastic bar.

to 0.224).

* A good discussion of the mathematics of this problem is given in H. Lamb,

Dynamical Theory of Sound, Edward Arnold & Co. (1931).
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If a bar is clamped at one end and the other end is left completely free,

the possible modes consistent with these end conditions are somewhat

different. The number of nodes (including the one at the clamped end),

together with the frequency relationships, for a few of the various modes

are given in Table 7-3. Other frequencies may be discovered for other

combinations of end conditions.

TABLE 7-3

Frequency /i h U n

Relative frequency 1.0 6.27 17.5 34.4

Number of nodes 1 2 3 4

7-18 The tuning fork. We should not leave the subject of bar vibra-

tions without mention of the tuning fork. Such a fork is really a bar bent

in the shape of a letter U. The bending can be shown both experimentally

and theoretically to bring about a closer spacing between the two nodes

which are characteristic of the simplest mode of vibration of a straight bar,

free at the ends. Compare Fig. 7-11 with Fig. 7-10 for the straight bar.

If a tuning fork is struck with only a moderate blow, so that the amplitude

of the prong motion is small, frequencies higher than the fundamental will

be of negligible prominence. In addition, since the drop in amplitude per

cycle is about the same for all frequencies, the higher modes will disappear

sooner than the lower ones. Also, the various

possible frequencies are rather widely spaced, as

was pointed out for the straight bar, and the upper

frequencies are therefore of little consequence

within the audible range. As a result of this gen-

eral behavior, the tuning fork is an excellent source

of pure sinusoidal vibrations of a single frequency.

As mentioned in Chapter 3, it is a very poor direct

radiator of sound waves, since it possesses double

source action. Its radiation efficiency may be

greatly enhanced by touching its stem to a table

top or other plate of large surface area. The

area of this secondary radiating surface, together

with the self-baffling action of the plate for its

fir; 7 ji Vibration own dipole components, will add much to the

of a tuning fork. audibility of the sound.

Node Node



172 STATIONARY WAVES. VIBRATING SOURCES [chap. 7

7-19 The vibration of plates. A plate is, in a sense, a bar with two

large dimensions and it compares to a membrane as does a bar to a string.

Transverse deformation of a plate is always accompanied by shearing

forces and bending moments, just as in the bar, except that in the plate

there is the additional complication that waves may travel in any direction

parallel to its surface. The mathematical difficulties connected with the

analysis of the vibrations of a plate are great, and we
shall only indicate the general nature of the motion.

For a circular plate, like the diaphragm of a telephone

receiver, the possible symmetrical modes of vibration

are quite similar in appearance to those of a circular

membrane, as shown in Fig. 7-8. For a square plate,

symmetrical modes of vibration of a different variety

may occur. Most of us have seen demonstrated the

classic sand patterns known as Chladni plate patterns.

In this experiment a heavy plate is set into transverse

vibration by means of bowing or, more effectively, by

electromagnetic means. Sand sprinkled on the plate

will then gravitate towards the nodal regions. The

variety of patterns obtainable is very great. A few are

shown in Fig. 7-12.

We should note that in general, as for a bar, the

various possible frequencies for a plate are not related

by integers and are relatively Jar apart as compared

with those for a simple string. This latter fact is of

some practical importance in telephone receiver design.

Utilization of the fundamental mode is desirable from

the standpoint of efficiency. If the diaphragm is

designed to resonate in the middle of the useful fre-

quency range, the higher resonance frequencies for the

most part will be outside the important part of the

audible spectrum.

•"-

Fig. 7-12. Typi-

cal Chladni sand
patterns for a

square plate.

7-20 Stationary air waves in pipes. Resonance effects in enclosed

bodies of air may be of two general types, the first of which was introduced

in our discussion of the Helmholtz resonator in Chapter 5. It was carefully

noted there that for the resonance formula developed to be valid, any

dimension of the enclosed volume must be small compared with the wave-

length of the radiated sound. The enclosed air then acts as a simple spring.

Mention was also made of the possibility of higher resonance frequencies

associated with stationary wave phenomena. Resonances of this latter kind
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occur when the dimensions of enclosed bodies of air are comparable to or

larger than the wavelength. The various modes of vibration are very

similar to those for strings and for bars executing longitudinal motion and

the mathematics is almost identical, as we shall see.

As an example of stationary waves in air, the vibration of a cylindrical

air column of limited length is of the most general interest, since such a

geometry is basically that of the organ pipe and other of the wind instru-

ments. As a matter of fact, the analysis to be given does not require a

circular cross section. The cross-sectional shape of wooden organ pipes

is usually square and their behavior does not differ significantly from that

of pipes having circular cross sections.

7-21 Vibrations in a pipe closed at both ends. The particular manner

in which an air column may be set into vibration will be discussed in Sec-

tion 7-27. At this point we shall simply assume that some disturbance in

the air has started plane waves traveling along the axis of the pipe. If

both ends of the pipe are closed with rigid plates, such waves will be

reflected, the phase relations at the boundaries being identical with those

for a string having fixed ends. For the air column, £ must be zero at the

ends. As a consequence, the incident and the reflected wave must be just

180° out of phase at those positions. The number of steady periodic

motions consistent with the condition that the ends of the column be nodal

points may be determined from the stationary wave equation

| = 2?mSin(f*)cosff < + «)• (7-31)

(This equation is Eq. (7-12) for the string rewritten in terms of the air

particle displacement £.) Just as for the string, the frequencies are given

by

/ = ~ • (7-32)

The diagrams of Fig. 7-3 for the string may be taken over bodily for the

column of air, if we are careful to interpret ordinates as longitudinal air

displacements.

It should be understood that what has been said above refers strictly

to the displacement variable £ in the wave. A sound wave involves other

parameters, such as the important pressure and density variables, and

the stationary wave picture for these latter variables is quite different from
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that for the displacement. For in-

stance, to see just what the pressure

situation is at the ends of the pipe,

let us operate upon Eq. (7-31).

This expression is the exact equiva-

lent of that for two oppositely

traveling waves. For a plane

wave, the relation between p and £

is

dx

Node
I

Antinode Node
i

Antinode

p = — (7-33)

Hence the acoustic pressure in the

pipe, as a function of x and t, is,

from Eqs. (7-31) and (7-33),

Fig. 7-13. Stationary wave pattern, pipe

closed at both ends, (a) for displacement-

fundamental mode, (b) for pressure-funda-

mental mode.

p =- 2£m(B-~cos(—- xj cosl—j-t + ay (7-34)

It will now be seen that with various integral values of n the end positions

(where x = and x = I, respectively) become pressure antinodes, since at

these points the cosine expression has its maximum value of unity. The
same thing may be said of density, since the condensation and the acoustic

pressure are linearly related. It is therefore correct to call the end points

either nodes or antinodes, provided one is careful to specify the proper

parameter. The diagrams of Fig. 7-13 emphasize this distinction.

7-22 Vibration of an open organ pipe. Organ pipes are either open at

both ends or open at one end and closed at the other. The former is called

an "open" pipe, the latter a "closed" pipe. In this section we shall dis-

cuss the open pipe. Reflections of longitudinal air waves may take place

at an open end as well as at a closed end. From a qualitative physical view-

point the process is understandable if one looks at the pressure parameter

in the wave. When a pulse associated with a positive value of the excess

pressure p reaches an open end, it suddenly leaves the confines of the tube

walls and enters the less restraining region of free space. Its abrupt exit

leaves behind a pulse of rarefaction which propagates back down the tube

and constitutes the reflected component. Such a conception carries with

it the notion of a phase reversal of the pressure component of the disturb-

ance upon reflection. We may verify this conclusion in a more convincing

manner if we consider the displacement feature of the wave.

The last layers of air near an open end of a pipe are under somewhat
smaller restraining forces than are layers well within the pipe, since the air
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beyond the end is unconfined and the medium can move laterally as well as

axially. As far as the particle displacement £ is concerned, we may con-

sider the boundary condition at an open end as somewhat analogous to the

free-end condition assumed earlier for a string or for a solid bar vibrating

longitudinally. If this picture is essentially correct, we may adopt as the

expression for £ in an organ pipe open at both ends, the form of the string

solution given by Eq. (7-20), that is,

£ = 2£w cos (¥*)
. /mrc
sm\-

j
-t + ") (7-35)

V

which shows the amplitude of the variation in £ to be a maximum at the

ends. These points therefore are displacement antinodes. If, however, we

are interested in the pressure at the ends, by making use of Eq. (7-33)

relating £ to the acoustic pressure p, we find that

= 2£W(B -j sin f -j x) sin f
— t + a )• (7-36)

This equation indicates that the end points for an open pipe are pressure

nodes, since when x = or I, p is zero for all values of the time.

This result is quite consistent with the qualitative description of pulse

behavior. If a pulse involving positive acoustic pressure returns as a pulse

of negative pressure, the incident and reflected pulses at the open end are

out of phase and hence the end point is located at a pressure node.

The various facts regarding the two kinds of end conditions in an air

column are summarized in Table 7-4.

TABLE 7-4

"Displacement" wave "Pressure" wave

Closed end Open end Closed end Open end

Phase change at reflection 180° none none 180°

node antinode antinode node

7-23 Reflection and acoustic impedance. The reflection at an open

end is not complete. The fact that wave energy does leave the pipe (since

the sound is audible) is evidence enough that with each reflection only

some fraction of the energy incident at an open end returns down the

tube. When the perimeter of the pipe end is small compared with the
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wavelength, the reflection is more complete. This follows from the dis-

cussion of diffraction in Chapter 4 and from certain features of horn

behavior as presented in Chapter 5. The open end of a pipe may be con-

sidered as a possible source of waves radiating into space. If the perimeter

is small compared with the wavelength, the energy will radiate with great

spherical divergence and the specific acoustic impedance z s at the pipe end

will have a relatively large imaginary or reactive component characteristic

of a sphere of small radius (small, that is, compared with the wavelength).

Little real power will then leave the pipe and reflection and stationary

waves will be encouraged. Since practical organ pipes do have cross sections

of these relative proportions, the degree of reflection is quite adequate to

maintain stationary waves of large amplitudes. Some escape of energy

takes place, however, because the real component of the acoustic imped-

ance, while relatively small at an open end, is never zero.

We shall have more to say in the next chapter about the possible effect

of a partial reflection at the end upon the wave pattern within the pipe.

For the present we shall assume the reflection at an open end to be practi-

cally complete and so deal with a simpler picture.

7-24 Frequencies of vibration of a " closed " organ pipe. The boundary

conditions for a closed pipe correspond to those for a string with one end

fixed and one end free, and have already been discussed in Section 7-11.

The possible modes of vibration of the air column will be given by

/ = §• (7-37)

Only odd integers may be used for n' , it will be remembered, and hence only

the odd harmonics will be possible for a closed organ pipe under the ideal

conditions assumed. The actual harmonics present when an organ pipe is

sounded will depend upon how it is excited. This point will be considered

when we discuss musical instruments.

7-25 General features of stringed instruments. The violin. As every-

one knows, a violin is much more than a stretched string, and wind instru-

ments are not, in general, simple cylindrical tubes. The design of musical

instruments is the outgrowth of hundreds of years of experimentation,

with until recently little or no careful scientific analysis. Empirical study

over a long period will often achieve the desired results and the construction

of musical instruments is a good example of this sort of development. To

deal completely with this subject would require a book in itself. We can

here emphasize only some of the essential physical principles involved.

A violin is a thin-walled box of unique shape, with the strings stretched

tightly across the so-called "bridge" (Fig. 7-14). The four strings, some-
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times of gut and sometimes of metal, are all of the same length (measured

between the bridge and the upper clamping point) but are of different

linear mass density and are under different tensions. As a result, the fun-

damental modes differ. The "open" string resonances cover a range of

somewhat over an octave. The fundamental modes can be raised by

shortening the string, i.e., by "stopping" the string with the finger. The

range of the instrument may in this way be extended to about four octaves.

It is important to recognize that the sound waves produced by a violin

originate almost exclusively with the vibrations of the body of the instru-

ment, not with the vibrations of the strings themselves. A vibrating

string, as mentioned in Chapter 3, is a linear array of double sources

whose dipole components are almost coincident. The rate of dissipation

of the vibrational energy by the radiation of sound waves is practically

zero. Most of the energy supplied by the bowing action is transmitted

to the body of the instrument through the bridge,

Bridge JUSIW the latter being set into motion by the periodic

shortening and lengthening of the string associated

with the stationary wave pattern. The amplitude

of the motion at the top of the bridge is longitudinal

and is smaller than that of the average transverse

displacement of the string. The ends of the string

can therefore still be considered fixed as far as

tion^o/the body^oTa stationary waves are concerned. Vibrations are

violin. transmitted to the bottom of the instrument by

a wooden rod called the "sounding post," which

extends from the belly downwards (SP in Fig. 7-14). The sound waves

originate largely with the vibration of the top and the bottom of the

violin. These areas are enormously larger than the surface areas of the

strings and the dipole components are separated in space by a much greater

acoustical distance than are those of the strings. For these reasons the

body of the instrument is an efficient radiator.

The harmonic content of a note played upon a violin is a complex func-

tion of a number of different factors. The most obvious are the manner of

excitation (bowing or plucking) ; the position on the string where the excita-

tion occurs (although this is apparently of minor importance) ; the complex

modes of vibration of the various sides of the instrument body, which are

impossible to predict on any analytical basis ; and the nature and shape of

the air cavity within the instrument, which may sometimes act as a Helm-

holtz resonator and sometimes, for the higher frequencies, may act in the

manner of a pipe closed at one end. The wooden body possesses internal

dissipation qualities due partly to the presence of joints and partly to the
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nature of the wood itself. Such dissipation is greater for the higher fre-

quencies than for the lower, and so contributes in an important way to the

strength or weakness of the upper harmonics.

Many experimental studies of the harmonic structure of the sound from

a violin have been undertaken. Figure 7-15 shows the relative prominence

of the various harmonics present for the four strings, each vibrating as an

"open" string (using its maximum length). Each graph is different.

Note that although for the G and E strings the lowest frequency is not the

most intense, the characteristic pitch is still usually associated with the

lowest frequency. This results from an interesting property of the ear,

discussed further in Chapter 9. If presented with a more or less complete

harmonic series, the ear apparently will associate the whole set with the

mathematical fundamental, even though the latter may be weak or missing

altogether.

Except for the factor of size, the other members of the violin family are

of similar construction and behave in a similar fashion. Each of the

numerous stringed instruments has, of course, a musical quality all its

100%
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Fig. 7-15. Harmonic content of the sound from a violin when each of the four open

strings is bowed. (After Culver)
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own. In some cases a plucked note will sound brilliant, in others some-

what muffled. This effect is associated with the degree of attenuation of

the upper harmonics. The attenuation is rather large, for instance, for the

banjo and is less for the guitar. A string of gut has greater attenuation

than a string of metal. Stringed instruments have been carefully studied

in recent years and summaries of the significant factors affecting tone are

readily available.*

7-26 The piano. The piano, certainly the most widely played of all

the string instruments, is somewhat simpler to analyze from an acoustical

point of view than is the violin. As with the violin, the vibrating strings

of the piano are not direct radiators of sound waves. Instead, the vibra-

tions of the strings are transmitted through the string supports to a massive

sounding board, analogous to the light wooden box of the violin. This

radiating plate has very broad resonance properties and is capable of

vibrating at all the fundamental frequencies to which the strings are tuned

and also at a great many of the harmonics which the hammer blow inevi-

tably excites. Since the area of the sounding board is large, it is an efficient

radiator for even the very low frequencies. Because of the great physical

size of the piano, strings of considerable length may be used and this makes

possible fundamental modes of vibration of much lower frequency than in

the violin. By "loading" the bass strings with wound copper wire the

wave velocity may be decreased (since a in Eq. (7-4) is thus increased)

and this makes possible still lower fundamentals. The range of funda-

mental frequencies for the piano (over seven octaves) is wider than that of

any other instrument except the pipe organ.

The radiated sound from a piano is rich in harmonic content, particularly

from the strings of low register. This is a feature of piano music that

delights the listener and is of much concern to the manufacturers of small

pianos of the spinet type. To achieve compactness, these pianos have

strings which are shorter than normal in the low register and these must be

under less tension, or more heavily loaded, or both, in order to resonate at

the proper frequencies. These shorter strings will execute rather large

amplitude vibrations when struck and the harmonics will usually be more

prominent than in the case of a piano of conventional size. Since the

sounding board is also smaller, there is danger that it may not resonate at

the lowest frequencies and also that it may be a less efficient acoustic

radiator. As a result of all of these factors, the fundamental associated

with the very low notes is often almost completely missing to the ear, the

second or even the third harmonic being far more prominent. One way of

* For interesting reading, see Culver, Musical Acoustics, Blakiston Co. (1947).
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surmounting these difficulties is to utilize air cavity resonances but these

are usually too sharp and an unnatural enhancement of certain notes often

results. The building of a small piano with tonal qualities equal to that

of a large one is still an unsolved problem.

7-27 The wind instruments. Excitation of an organ pipe. The wind

instruments form a second large and important group of musical instru-

ments. These employ resonating columns of air, either of uniform cross-

sectional area, like the organ pipe, or with a flare, as in the horns. The

manner in which the air column is set into vibration differs with the differ-

ent instruments, although there is a certain similarity among them all. We
shall look first at the organ pipe.

Figure 7-16 shows an organ pipe of the simple "flue"

type in cross section. During excitation a steady stream of-

air is blown against the rigid wooden (or metal) lip. At very

low velocities the stream of air divides, part entering the

pipe and part flowing to the outside. As the velocity of

the stream is increased, however, turbulence sets in near the

edge of the lip and the stream begins to swing first to one side

and then to the other. Rotational motion of the air results and

small vortices may form with each swing. As shown in the

figure, these vortices break off at the sides of the lip. One

set is dissipated outside the pipe. The other set, inside the

pipe, travels along the axis of the pipe with approximately

regular spacing if the stream velocity is maintained constant.

These regularly spaced regions of disturbance represent pulses FlG 7_16

of a periodic nature and, being pulses, may be thought of in Pulse forma-

terms of a Fourier harmonic series. Some one of these har- tion during the

. . , blowing ol an
monies is apt to be close to a natural pipe resonance and so organ pipe

the air column may begin to vibrate in a sinusoidal manner. A
variation of the stream velocity may result in a variation in the spacing of

the vortices and a consequent favoring of one or another of these modes of

vibration. The whole process is somewhat analogous to the thermionic

tube generator of electrical oscillations. In both the organ pipe and the

vacuum tube circuit a nonlinear element (the lip mechanism for the pipe

and the vacuum tube characteristic for the circuit) soon transforms a

steady flow of energy into a flow of periodic nature.

The interesting phenomenon of " singing" telephone wires is related to

the excitation mechanism just described. When wind velocities are suffi-

cient, small whirlpools will form and break off on the leeward side of a

wire exposed to the stream. As they break off a mechanical reaction is
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exerted on the wire, which then may begin to vibrate at one or more of its

natural modes

.

"
n '

7-28 Wind instruments of the reed type. Some organ pipes and many
of the smaller wind instruments are equipped with reeds near the air

inlet. The reed (of metal, bamboo, or some other suitable material) is set

in vibration by a steady stream of air blown past it. The process is very

similar to the pulse formation just described. In some organ pipes the

reed (considered as a bar clamped at one end) is tuned so that its fundamen-

tal corresponds to the fundamental or other desired mode of the organ pipe.

In the smaller reed instruments, such as the clarinet, the reed is tuned to

a frequency considerably higher than the fundamental mode of the air

column. The frequency of the reed is controlled by the natural frequencies

of the air column for the lower notes, since the coupling between the reed

and the air column is rather close. Such frequencies are far removed from

the natural reed frequencies. At higher modes of vibration the natural reed

frequencies are more of a controlling factor and the reed resonances there-

fore considerably enhance the higher harmonics of the instrument, giving

to it its characteristic tonal quality. Ports, opened and closed with keys,

are provided to give the single tube of the instrument flexibility as regards

frequency. These keys provide a musical scale based on the fundamental

for the tube length and determined by the particular position of a port. It

is also possible to accentuate harmonics by opening a special port with the

so-called " speaker" key. Other subtleties of fingering and blowing make
the instrument increasingly flexible.

Each of the wind instruments has its own special features of control and
its own peculiar musical quality, determined by the harmonic structure

of the sound waves produced. It is interesting to note that in the clarinet,

discussed above, the driving end (where the air is blown in) is virtually a
node, instead of the antinode that might be expected. The amplitude of

the air vibration is so small at this end compared with that at the mouth
of the instrument that once stationary waves are set up the driving end is

in effect a point of no motion at all. As a result, the harmonics usually

present are those shown to be characteristic of the "closed" organ pipe, i.e.,

the odd ones only. For other of the wind instruments, such as the flute,

the resonances are those for a pipe open at both ends, where both even and
odd harmonics may be present. This is true for the oboe, whose tube is

conical in shape rather than cylindrical. Such a conical tube may be
s^own to resonate like an open organ pipe and so has a complete harmonic
series of vibrational modes.



182 STATIONARY WAVES. VIBRATING SOURCES [chap. 7

7-29 Wind instruments as radiating sources of sound. With the excep-

tion of the open organ pipe, wind instruments are almost exclusively

" single" acoustical sources. (An open organ pipe is a double source, and

the two sources may be in phase or out of phase, depending upon the mode

of vibration. In any case, the two sources are rather widely separated

in space and cancellation effects are small.) The mouth of a wind instru-

ment is the virtual source of the waves. The propagation in surrounding

air is approximately directional for the higher frequencies but much less so

for the lower, since the mouth size then becomes smaller in comparison

to the wavelength. For the air column to have resonance properties it is

absolutely necessary that there be considerable spherical divergence from

tihe mouth of the instrument, since such divergence is associated with a

complex form for the acoustic impedance at the mouth and hence with re-

flection back into the tube. A musical instrument must, of course, radiate

energy to be useful, but it must also resonate (through wave reflection).

The dimensions of the mouths of all the wind instruments are such that

both radiation and reflection can occur. It is interesting to note that in

this case a satisfactory design has been achieved by purely empirical means.

PROBLEMS

1. The length of a stretched string A
is twice that of string B. The tension in

A is twice the tension in B, but the total

mass of A is the same as that of B. Find

the ratio of the fundamental frequency of

A to that of B.

2. Show that the periodic motion of a

string fixed at one end and completely free

at the other is given by the equation

. In'-K \ In'irc \

y = 2y™ sm
[-zr

x
l

cos
[-zr

t + a
r

where n' may be only an odd integer.

3. A stretched string of length I is

pulled to one side a distance h, at a position

% the distance from one end. The string

is then released from rest, (a) Find

the subsequent frequencies of vibration,

(b) Are any frequencies in the harmonic

series missing? If so, discuss the connec-

tion between such frequencies and the

position of plucking.

4. From the stationary wave equa-

tions for p and for £, determine the specific

acoustic impedance at the end of a resonat-

ing organ pipe for (a) a closed end (infi-

nitely rigid cap), and (b) an open end

(assumed perfectly "free").

5. Consider stationary air waves in a

pipe, assuming perfect reflection at the

ends, (a) Show, by considering the prod-

uct p'%, that there is no average net flow of

power at any point along the axis of the

tube, (b) Discuss the specific acoustic

impedance at various points along the

axis.

6. A vibrating tuning fork held in the

hand is almost inaudible. If held over

the end of a pipe of the proper length for

resonance, the sound may be clear and

loud, (a) Why does this occur, since the

fork is the source of energy in both cases?

(b) Is any violation of the conservation of

energy implied in the above phenomenon?

Explain.

7. For what resonant frequencies will

an open pipe 5 feet long radiate as a double

source of the type considered in Chapter 3?
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8. (a) For a progressive transverse

wave on a string, compare the instanta-

neous distribution of potential and kinetic

energy along the direction of wave travel

with the energy distribution for a progres-

sive longitudinal wave in air. (b) For a
wave on a string, draw a graph of the total

energy (potential plus kinetic) as a func-

tion of x, and compare with the graph for a
longitudinal wave (Fig. 2-5).

9. A closed organ pipe 2 feet long and
of cross-sectional area 50 cm2 is resonating

at its fundamental frequency. If the
amplitude of motion of the air at the open
end is 0.2 cm, find the average acoustic

power radiated (Section 3-7).

10. (a) Show that the bridge of a
violin will vibrate at twice the string

frequency, (b) Suggest a physical pic-

ture of the energy transfer which does not
require a final frequency doubling, i.e., for

which the body of the violin vibrates with
the same frequency as that of the string.

11. The paper cone of a loudspeaker
sometime generates sound waves which are
sw&harmonics of the frequency of the axial

driving force (applied at the apex of the
cone). With a driving frequency, for

instance, of 1000 cycles-sec-1 there may
appear a 500-cycle note as well. This is

due to the fact that the cone is not com-
pletely rigid, so that flexure may occur.
Draw a physical picture to explain the
appearance of such subharmonics.



CHAPTER 8

REFLECTION AND ABSORPTION OF SOUND WAVES

8-1 Introduction. In the preceding chapter we have seen how a more

or less complete wave reflection at the end of a string, a bar, or an air

column led to the formation of a stationary wave pattern in front of the

boundary. Two general types of end condition were considered, the im-

movable or fixed end, and the end perfectly free to move, with no restrain-

ing force of any kind. In the first instance the fixed end was necessarily

a nodal point, as far as displacement of the particles of the medium was

concerned. Interpreting this situation in terms of reflection phenomena,

we saw that at such a node the incident and the reflected waves are just 180°

out of phase. For the free end the conditions were right for an antinode
;
at

an antinode the incident and the reflected waves are exactly in phase.

Only in special types of practical problems will these extreme conditions

of restraint or freedom apply with any degree of accuracy. An elastic

string stretched between rigid supports constitutes a system where the end

conditions are close to ideal. On the other hand, an air column in an open

pipe is under some restraint at the ends, due to the presence of the sur-

rounding air, and to call the ends "free" is only an approximation. In

general, all practical boundary conditions involve partial freedom (or

partial restraint) and under such conditions we have no right to make use

of conclusions as to phase, etc., that are the outgrowth of mathematics

suited only to the two limiting cases.

It is the purpose of this chapter to examine more closely the reflection

phenomena for longitudinal waves when the boundary conditions are

intermediate between the two extremes. The problem is of great practical

interest in connection with the acoustical behavior of rooms, since in such

enclosures sound waves impinge upon wall surfaces which are rarely per-

fectly rigid. The exact extent and manner of the "yielding" in the

presence of acoustic pressures affect the reflection process in an important

way and this in turn, as we shall see later, largely determines the suitability

of the room for speech or music.

8-2 Reflection of longitudinal waves at a boundary between two ideal

elastic media, each infinite in extent. As is usual in all branches of physics,

we shall begin with a relatively simple situation and later, when we have

developed some basic principles, proceed to the more complicated problems.

Consider first two media, each having elastic and inertial properties, con-

tinuous and isotropic in nature and separated by a plane boundary, as in

184
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Boundary

Fig. 8-1. The regions to the right and to the left of the boundary are to

be considered infinite in extent, so that no reflections may occur except

possibly at the boundary of separation. For the medium at the left, the

density and wave velocity are pi and ch respectively; for the medium at the

right they are pi and c 2 . The density p, as used in this chapter, will always

refer to the average undisturbed value. No dissipative forces are present

in either medium.

Let us assume that a periodic plane wave ad-

vances toward the boundary from the left with

exactly normal incidence . (The wave front will

then be parallel to the plane of the boundary.)

Assuming that reflection and also transmission

into the second medium may take place, we
have then to consider the presence of three

separate wave trains in the neighborhood of the

boundary, the incident wave and the reflected

wave to the left of the boundary, and the trans-

mitted wave set up in the second medium, to

the right of the boundary. In Fig. 8-1 these

wave components are labeled respectively i, r,

and t.

As we approach the boundary plane from either side, it is necessary that

the last layer of each medium, located at the boundary, be identical in

motion to the other and be in a region of identical pressure. In mathe-

matical terms, both particle velocity and acoustic pressure must be mathe-

matically continuous across the boundary. (This notion of "continuity"

across a boundary is used in other branches of physics. It will be recalled

that the normal component of induction, B, is continuous across a boundary

between two magnetic media.) To the left of the boundary, both the inci-

dent and the reflected waves contribute to the total particle velocity (the

latter is the vector sum of the two contributions). To the right of the

boundary there is only the transmitted Wave to consider. Making use of

i, r, and t as subscripts to indicate the three separate wave components, we
may therefore state that

h + & = it (8-i)

and

Pi + Pr = pi. (8-2)

Fig. 8-1. Partial reflection

of plane waves at a boundary
between two different media.

The instantaneous particle velocities in Eq. (8-1) are written arbitrarily

as positive, the positive direction being the direction of travel of the incident

wave. Since £ is periodic in each case, the algebraic sign will vary with the
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time. At this point there is nothing to indicate the relative phases of £r ,

£t, and it. Such phase relationships will appear, however, in the course of

this analysis.

The acoustic pressure p associated with each wave component is con-

nected with the corresponding particle velocity by the plane wave relations.

A comparison of Eqs. (2-19b) and (2-19e) shows that

or

V = pel (8-3)

As was pointed out in Section 2-13, the particle velocity is in phase with

the pressure for a wave traveling in the positive ^-direction but is out of

phase by 180° for a wave traveling in the negative ^-direction. If we intro-

duce into Eq. (8-2) the relationship given by Eq. (8-3), we must therefore

use the negative sign for the reflected wave. The expression for the con-

tinuity of pressure may then be written

PiCilt — piCil = P2C2&. (8-4)

It is now a simple matter to discover the exact relationship among the

three particle velocities at the boundary. If we eliminate £* between

Eqs. (8-1) and (8-4), we can obtain the ratio of |r to £», that is,

fc = m - p*,
.

|i PlCi + p 2c 2

If, on the other hand, we eliminate £r , we will have the ratio of £ t to £»,

j, = _m_.
& PlCi + p2c 2

It should be noted that the ratio of the particle displacements is identical

to the ratio of the velocities. Therefore we may replace £r/£i by &/£», and

it/h by Mb.

8-3 Relative magnitudes of the particle velocities. Equations (8-5)

and (8-6) describe the boundary conditions for two elastic media. It will

be observed that the ratio of £r to I and of £* to I in each case is a function

of the specific acoustic impedance characteristic of each medium in the

presence of progressive plane waves. Equations (8-5) and (8-6) give the

magnitudes of the particle velocities in the reflected and in the transmitted

waves, relative to the incident wave. Whenever pc for the first medium
differs from that for the second, there will be a reflected wave and also a

transmitted wave. When pc is the same for both media, there is only a

transmitted wave. If we use for I and £« the root-mean-square values
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(£r)rms and (£*)rm S , we may readily compute the relative intensities of the

three wave components. Using the same subscripts for the intensity I as

for the particle velocities, we may state that

Ir = PlCl(£-)
2
rms = /Wl ~ P2C2V = / (z.)l ~ (zs) 2V ,g_~

li PlCl(^)
2
rms Wl + P2C2/ \(2«)l + feW '

and

2j = p2C 2(^)
2
rms _ P2C2 / 2piCi \

2 _ (2,) 2 / 2fe) 3

/t PlCl(|i)
2
rms PlCl \p1C1 + p2C 2

Since no dissipative factor is present, it is necessary that J t = Ir + /*.•« It

is easily verified algebraically that Eqs. (8-7) and (8-8) are consistent with

this statement of the conservation of energy.

8-4 Relative phases. In Eq. (8-5) the ratio of £r to £ t
- may be either

positive or negative, depending on the relative magnitudes of picx and p2c2 .

If piCi is greater than P2C2, the ratio is positive, indicating that £r and £»,

both sinusoidal quantities for disturbances of a simple periodic nature, are

always in phase. On the other hand, if piCi is less than p 2c 2 , the ratio is

negative. For £r and £ t
- to be always directly opposite in algebraic sign

indicates a 180° phase relationship and since piCi and p 2c 2 are real numbers,

no phase relationship other than this is ever possible.

From the phase relationship just described, we may conclude that in a

case where £r is in phase with £», the two waves will reinforce each other

just in front of the boundary, as they do for a completely free end of a string.

When there is a phase reversal, on the other hand, the incident and the

reflected waves will partially cancel. The cancellation will not be complete

because the maximum value of £r will, in general, be less than the maximum
value of £i and so we cannot properly call the boundary a true nodal point.

As a matter of fact, because of the partial reflection the whole character of

the stationary wave pattern in front of the boundary is different from that

of a string attached to rigid supports.

8-5 Magnitudes and phases of the acoustic pressures. The pressure in

the three wave components under discussion is of especial interest. If we
make use of the relation p = pc%, we may write Eq. (8-1) in terms of the

pressure rather than in terms of the particle velocity. Combining this

equation with Eq. (8-2), we find that

Pr = P2C2 — PiCi _ (g,) 2 — fe)l ,g_gs

Pi PlCl + P2C2 (zs)i + (2,) 2

and

2, = 2p,C2 = aw. .

(8_10)
Pi PlCl + P2C2 (Zs)l + {Zs) 2
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It will be noted that the acoustic impedances in the numerator of Eq. (8-9)

are interchanged as compared with Eq. (8-5) for the particle velocity ratio.

The ratio of the magnitudes of the pressures pr and pi is identical with the

ratio of the magnitudes of the particle velocities. This is to be expected,

since the intensity ratio for plane waves in the same medium must be pro-

portional to the square of either the velocity ratio or the pressure ratio.

The phase relationships for pressures, however, are reversed as compared

with the relationships for particle velocities. When picx is greater than

P2C2, pr is 180° out of phase with p { , and when piCi is less than p 2c 2 , pr is in

phase with pi and thus the conditions for reinforcement of |r and £; are just

right for the partial cancellation of pr and pi. This is in line with the

results of our discussion of stationary waves along strings or in pipes, as

presented in Chapter 7. The ratio of p t to pi is always positive, as is the

ratio of ^ to |i, so that the pressures in the transmitted wave and in the

incident wave are always in phase. The ratio of the pressure magnitudes

differs from the ratio of the velocity magnitudes because of the part pc

plays in the equation connecting p and £.

We must emphasize again that these simple phase relationships, 0° or

180° as the case may be, apply only to the particular physical system de-

scribed at the beginning of this analysis. We shall presently consider

boundary conditions which are more complicated.

8-6 Practical implications. The formulas developed in the previous

sections apply well to such a pair of elastic media as air and water. For

air under normal conditions, pc approximates 42 cgs units. For fresh

water, under the same conditions, p is 1.0 and c may be taken as 143,000,

both in cgs units. Therefore pc for water is 1.43 X 10 5 cgs units, a figure

about 3400 times that for air. As a result, plane waves impinging

normally upon a boundary between air and water will, by Eq. (8-7),

be almost completely reflected, whether the waves are incident on the air

side of the boundary or on the water side. If the waves do not strike with

normal incidence, we need consider only the normal component of the

particle velocities in the incident wave, since the component parallel to the

boundary surface remains virtually unaffected. As in the reflection of

light waves from a polished surface, the angle of reflection will equal the

angle of incidence, with an intensity in the reflected wave practically equal

to the intensity in the incident wave. A longitudinal wave started within

a relatively thin layer of water such as a shallow lake will therefore remain

confined to the water by a process of internal reflections.

We may apply our reflection criteria to the problem of a metal bar,

vibrating longitudinally and surrounded by air. Instead of considering
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the bar to be completely free to move at one end, let us consider the end

of the bar as a boundary plane between two different media, steel and air.

We must be very careful, as usual, that the assumptions back of any equa-

tions we use are at least approximately realized. To be sure that we are

dealing with plane waves throughout, let us picture the bar as being rela-

tively short and of large cross section. A short bar will have high frequency

modes of vibration (steady state stationary wave modes) and the large area

of its end, since the wavelength in air will be short, will ensure plane wave

propagation in the surrounding medium. We may now apply the findings

of the previous sections.

Suppose a single train of waves is set up in the bar by a blow at one end.

When such a train of waves reaches the opposite end, it will encounter a

boundary between steel, for which pc is about 3.9 X 10 6 cgs units, and air,

for which pc is 42 cgs units. The difference is very great, so that, according

to Eq. (8-7), almost complete reflection will take place. Since in this

case piCi is greater than P2C2, we may conclude that upon reflection there will

be no phase shift in £ (or, conversely, that there will be a 180° shift for p).

Therefore this end of the bar becomes a velocity or displacement antinode,

corresponding to a pressure node. These results are in agreement with

those of the earlier more direct physical argument.

The value of the product pc for liquids is much closer to that for solids

than is the value for gases as compared with liquids, or gases as compared

with solids. Therefore when plane waves reach boundaries between

liquids and solids the reflection is less complete than in the cases we have

been discussing. If we consider the two media steel and water, we find that

for waves passing from steel to water,

Jr = [ (PC)^!
~ (pc)waterT = [

3.9 X 10 6 - 1.43 X 10 5

]
2

= Q Rfi

/* L(pc) Steel + (pc)wateJ |_3.9 X 10 6 + 1.43 X 10 5
J

U
" °*

Therefore 14% of the incident energy will pass into the water. It should

be noted that this result is obtained for a wave traveling in either direction.

This is also true, it will be recalled, for optical reflections.

Example. Plane longitudinal waves, passing first through water, strike a bound-
ary between water and ice with normal incidence. Assume each medium to be

infinite in extent. Compute the magnitudes of the following ratios:

kkkh
Compute also the relative phases for the particle velocities and for the acoustic

pressures.

Pwater = 1.0 gin-cm-3. cwater = 1.43 X 105 cm-sec-1.

Pice = 0-92 gm-cm-3
. Cice = 3.8 X 10 5 cm-sec-1 .
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(pc)water = 1.0 X 1.43 X 10 5 = 1.43 X 10 5 gm-cm-^ec-1
.

(pc)ice = 0.92 X 3.8 X 10 5 = 3.49 X 10 5 gin-cm^sec"1
.

ir = (1.43 - 3.49) X 10 5

fe (1.43 + 3.49) X 10 5

£ t _ 2(1.43) X10 5

|, (1.43 + 3.49) X 10 5

j = (0.42)
2 = 0.177.

j = 1 - j = 0.823.
±i i-i

The relative phases are:

£r is 180° out of phase with £»-.

\t is in phase with &.

pr and p< are both in phase with p^

If we are interested primarily in enhancing the transmitted component,

i.e., in obtaining the maximum energy in the second medium, we should

obviously select two media for which pc is nearly the same. As p 2c 2 ap-

proaches the value of piCi the value of Ir approaches zero (Eq. (8-7)) , and for

the transmitted wave I t approaches I { , as one would expect. For a steel

bar immersed in water the two values of pc are still quite different but less

so than for a steel bar in air. The vibrations of a freely oscillating bar

immersed in water will very quickly die out, due to the rapid loss of energy

at the ends. The bar in air will continue to vibrate for a much longer

period of time and it is evident that its rate of decay is controlled more by

internal dissipative forces than by radiation effects. This property is of

interest in the production of underwater longitudinal waves, where the

problem of introducing maximum acoustical power into the medium is of

primary concern (Chapter 12).

8-7 The effect of partial reflection upon the stationary wave pattern.

For the stationary wave patterns considered in Chapter 7 we assumed

perfect reflection at the boundaries. If any appreciable fraction of the

energy incident at the boundary leaves the first medium, the reflected

wave will have a lower amplitude than the incident wave and the stationary

wave pattern will be altered.

Let us consider the reflection of a longitudinal wave at a boundary be-

tween two media where the product pc for the first medium is less than for

the second medium. The wave is approaching the boundary from the right,
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as in Fig. 8-2. As we have seen, there will be

a 180° phase shift as far as £ or £ is concerned,

and the incident and reflected waves will

therefore partially cancel at the reflection

boundary. The periodic solution to the differ-

ential equation for plane waves may then be

written, as before, in two parts of the same

form, except that in this case the amplitude

of the reflected wave (£m) r is less than that of

the incident wave (£w) ».

2tt
£ = (£m)tCOS— (ct + x) ft»), cos— {ct

A

Fig. 8-2. Direction rela-

tionships for partial reflection

of plane waves.x).

(8-11)

The negative sign for the reflected wave is necessary to satisfy the condi-

tion at the boundary, where x = 0.

If we now expand the cosine functions, considered as the cosines of the

sums and differences of angles, and collect terms, we obtain

£ = [(&»)* - (£m)r] COS -y- X COS— t
T/t- \ I (y \ 1 ' 27TC . 27TC

l(W» + ft»)J sin— x sin— t.

(8-12)

Comparison of this equation with the several stationary wave equations of

Chapter 7 will show that the complete expression on the right represents

two separate sets of stationary waves. The frequencies associated with

each are the same but the amplitude of motion at the antinodes is different

for the two patterns, being the sum of the separate wave amplitudes in the

one case and the difference in the other. The two sets of antinodes do

not occur for the same value of x, since in one case a cosine function is in-

volved and in the other a sine function. The antinodes of one set appear

halfway between the antinodes of the other or, in other words, at the

other's nodal points (Fig. 8-3a, b). The two component stationary wave

motions are 90° out of phase with each other in respect to time as well as

position, since one involves a sine function of t and the other a cosine

function.

The two graphs of Fig. 8-3a and b do not represent the conditions at the

same instant of time, and consequently cannot be directly added to obtain

the complete picture. Consideration of these two patterns, however, will

show the envelope of the particle motions along x to be something like the

graph of Fig. 8-3c, where the amplitude at point a\ is [(£«)» + (Zm)r] and

the amplitude at point a 2 is [(£TO)*
— (£m)r], there being no true nodal

positions at all.
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(Sm)j+Wr

(Sm)fU

(5m )
i

+ (§m)r

'"**.-. '*„.

- (C)

°2 °l

Fig. 8-3. Stationary wave patterns resulting from partial reflection of plane waves.

A similar pattern will occur for acoustic pressure, but with the maximum

and minimum points interchanged, for reasons discussed earlier. As we

shall show later, a convenient stationary wave method of measurement of

acoustic impedance is based on pressure measurements taken in a pattern

of this type.

8-8 The absorption coefficient. The absorption coefficient for a boundary

between two media may be denned as the ratio of the acoustic power

transmitted through a given area of the boundary to the power incident

upon the same area. For normal incidence of plane waves at a boundary

between two perfectly elastic media of infinite extent, we can, by Eq. (8-8),

define a coefficient an as

It * Ir P&2 ( 2piCi

Ii Ii P1C1Wi + p 2Cj-T
(8-13)

We are interested in acoustic absorption coefficients primarily for problems

arising indoors, where we can in no sense assume only two media of infinite

extent. A room has limited dimensions and, what is even more important,

the wall itself is usually a complex structure made up of comparatively

thin laminations, each component of which may have different physical

and acoustic properties. More often than not the wall is constructed of

panels of limited area, rigid at the edges and relatively flexible near the

center. The nature of the surface material may change radically from

one portion of the wall to another, due to curtains, windows, wood trim,

etc. Finally, to mention one other important complication, although sound
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waves originating within the room may reach a wall from predominantly

one direction (rarely the normal to its plane), more often than not energy

will arrive from practically all directions because of multiple reflections at

other walls.

In view of the remarks above one would expect to use Eq. (8-13) with

great caution and then only for certain special sets of conditions. There

are, as a matter of fact, several different kinds of absorption coefficients,

not easily denned. Before giving these definitions we shall look more care-

fully into the relation between acoustic impedance and sound absorption.

8-9 Specific acoustic impedance of a boundary surface. The specific

acoustic impedance in the path of a unidirectional plane wave is pc. For

spherical waves radiating outward from a pole, zs is in general complex, its

value approaching pc only at distant points. In the presence of two

oppositely moving waves such as exist in front of a boundary, the value

and nature of the acoustic impedance may be still different, if we consider

it to be the ratio of a total pressure to a total particle velocity, each of

which is dual in nature. To understand the procedure for determining

the impedance under these conditions, we shall consider a number of

simple special cases.

8-10 Both media perfectly elastic and infinite in extent. We shall define

the normal specific acoustic impedance zn for a boundary surface as the ratio

of the instantaneous total acoustic pressure at the surface to the total

particle velocity, assuming a plane longitudinal wave to impinge upon the

surface with normal incidence. For the system of two elastic media of

infinite extent used so far in this chapter,

z„ = f^f • (8-14)
?i T" £r

Because of the continuity of both pressure and particle velocity across the

boundary, zn may also be written

zn = &- (8-15)

In this case, therefore, zn = zs , where zs , as defined, is the specific acoustic

impedance characteristic of a free plane wave moving through the second

medium only. Since pc is a real positive number, zn is comparable to an

electrical impedance which is a pure resistance.

8-11 Boundaries for which zn is reactive. The process of reflection of

plane waves at the end of a cylindrical tube filled with air can be as readily

considered as that at an infinite plane. As will be remembered, plane
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waves started down cylindrical tubes of not too small cross section (so as

not to introduce dissipation) remain essentially plane. If a rigid flat plate

is placed at the end of the tube there will be no transmitted wave and zn

will be practically infinite. This follows from Eq. (8-14) , since £r will in this

case be equal and opposite to £;. Suppose, however, that instead the tube

is closed by a thin circular plate mounted on a spring, allowing axial motion

(Fig. 8-4). Now consider the effect of an acoustic pressure due to the

arrival of a plane wave. The total force over the face of the plate due to this

pressure is Sp, where S is the area of the plate. This force is applied to the

plate-spring system, whose mechanical impedance zm is reactive and is equal

to — j(K/w), where K is the elastic constant of the spring (inertia and fric-

tion in the plate-spring system are neglected). The velocity of the plate

must be the same as that of the air immediately in front of the plate and £

will then be

«2>
! = «£ =

Zm j(KM (8-16)

and the specific acoustic impedance at the surface may be computed as

Zn " t ~ J
su>

(8-17)

Since this is a purely imaginary quantity, there is no real power, on the

average, delivered to the plate at the boundary. Just as for the case of a

capacitor terminating a transmission line, instantaneous power is alter-

nately fed to the plate-spring system and then returned to the acoustic line.

Equation (8-17) shows that at the boundary the pressure is 90° out of

phase with the particle velocity.

If we assume the plate to have considerable mass and the spring upon

which it is mounted to be very weak, with a very small elastic constant,

the mechanical impedance of the plate-spring system will be predominantly

Mass negligible

c : ::: z::tw#////mmi

v/////////////////////////////////////m /

Spring constant, K , large

Fig. 8-4. A pipe terminated by a

mechanical reactance having the prop-

erties of capacitance (compliance).

v////////////////////////////////mz%

Spring constant, K, small

Fig. 8-5. A pipe terminated by a
mechanical reactance having the prop-

erties of inductance (mass).
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inertial (Fig. 8-5). By an argument similar to that just presented, we
may conclude that the specific acoustic impedance at the boundary is

.com
Zn — J

~S'
(8-18)

where m is the mass of the plate.

If both elasticity and inertia must be considered, and if in addition

some frictional forces are present when the plate moves, we may conclude
that zn , in general, is of the form

zn = R + jX.
j—tVWWWV 1

(8-19)pJT ~|
The imaginary part of zn maybe positive or negative

(indicating either a lag or lead of £ relative to p),

depending on the relative values of the constants.

At the frequency for which the plate-spring system
resonates, £ will be in phase with p and its root-

mean-square value will be pTms/R. The acoustic

impedance zn may be considered the equivalent of a

series LRC circuit, as in Fig. 8-6, where the impressed potential is the

acoustic pressure.

Fig. 8-6. Equivalent
"network " for the normal
specific acoustic imped-
ance at the end of a pipe.

8-12 Specific acoustic impedance at positions of discontinuity in the
tube cross section. If the medium in a tube is air, effects similar to those
just discussed are obtained whenever there are changes in the tube cross

section or when there are partial obstructions. In Fig. 8-7 is shown one
possible type of closure for a cylindrical tube. The system to the right of

the plane aa is very similar in geometry to the Helmholtz resonator
described in Chapter 5. In the region just to the left of the air channels
the ratio of the acoustic pressure to the particle velocity, averaged over
the total cross section of the main tube, will be determined by the
inertial, elastic, and dissipative constants of the system to the right of the
plane at aa. The air free to move in the several air channels will have
mass, as in the neck of the Helmholtz resonator. The larger volume of air

to the right of the channels will supply an elastic factor and friction along
the channel walls will add the dissipative factor. As a result, one would
expect the specific acoustic impedance at aa to be complex, its exact form
determining the numerical and phase relationships between p and £ at that
position. Depending upon the exact geometry, the impedance may be
predominantly inductive, capacitive, or resistive. (Each of the special

cases can be described on the basis of Fig. 8-7.)
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In the examples given in this and the preceding section, zn is definitely a

function of the frequency in the incident wave. Only for the system dis-

cussed in the early part of this chapter, i.e., the two elastic media of infinite

extent, is the value of zn independent of frequency.

8-13 Specific acoustic impedance at the surface of absorbing materials.

We are now in a better position to understand the absorption process at

the actual wall surfaces of a room or other enclosure. Every portion of

the wall surface of a room may be considered to offer to the incident waves

rt
a certain acoustic impedance. We shall

presently show that the quantitative

extent of the reflection as well as the

phase relationships are directly related

to the specific acoustic impedance zn ,

which in general is complex in nature.

All wall materials are to some extent

yielding. Some, like cloth and felt, are

highly porous and have a structure

(on a scale approaching the microscopic)

similar to that shown in Fig. 8-7. There

is clearly no possibility of a direct computation of zn in terms of the geometry

of the channels, the mass of the filaments, etc. The obvious recourse is to

experiment. The most common method of measuring zn experimentally is

based on observation of a stationary wave pattern. A resume of several

methods will be given in Chapter 10.

v/////////////////////////////^

W/////////////////////////M

V//////////////////////M

Fig. 8-7. One type of closure for

tube containing air.

8-14 The relation between zn and the absorption coefficient for plane air

waves of normal incidence. Returning now to the absorption coefficient

defined in Section 8-8, we shall show its important relationship to the

normal specific acoustic impedance of the absorbing surface. Consider

the total pressure p and the total particle velocity | at the surface. By

Eqs. (8-1) and (8-2), we may say that

and
p = Vi + Pt

Pi

pc
2=;

pc

(8-20)

(8-21)

where pi and pr respectively represent the pressures in the incident and the

reflected wave at the surface, and p and c refer to air. The negative

sign in the second equation is dueto the direction of the wave velocity, as

explained earlier.
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Since we cannot assume p» and pr to be the same in magnitude or in

phase, we shall consider each to be a complex quantity. Therefore when
we compute zn we shall expect to find it complex, the relationship to the

pressures being

The ratio of pr to pi as a complex quantity may be stated in the polar form:

^ = Meje
, (8-23)

Pi

where the modulus M represents the numerical ratio of the maximum
values of the two pressures, and is the relative phase angle (see the dis-

cussion on complex quantities in Chapter 5). Combining Eq. (8-22)

with Eq. (8-23), we find that

zn = R+jX = pc - J Mj . (8-24)

By a general property of complex quantities, it is necessary that the real

parts on each side of this equation be equal and also that the imaginary

parts be equal. By rewriting the complex parts of the right-hand side in

the form a + jb and collecting terms according to the rules of complex

algebra, one may therefore obtain two independent equations. These

equations essentially relate M and to R and X. Knowing R and X, it is

possible to find M and or, conversely, knowing M and 0, it is possible to

find R and X.

On the basis of the above mathematics, which we have here only out-

lined, the normal absorption coefficient an may be determined, once zn is

completely defined. The absorption coefficient an is given by

^'-Tr'-Mh 1 -^ <8
-25>

There are other mathematical and graphical tricks which may be developed

to shorten the actual computation of the absorption coefficient (see Morse,

Vibration and Sound and Beranek, Acoustic Measurements). In principle,

the notion of absorption is the same for all types of surfaces. The fact

that zn must often be considered complex is simply a computational detail.

8-15 Other absorption coefficients. The absorption coefficient an , often

called the free-wave coefficient, is only one of several coefficients, each

defined somewhat differently. The coefficient already discussed is perhaps
the most fundamental from a physical point of view but it is not necessarily
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the most directly useful. The Sabine absorption coefficient as is probably

the most important historically and until recently has been the one most
commonly used. This coefficient is the ratio of absorbed acoustic power

to incident power when the latter is arriving simultaneously from all

directions. For surfaces that react only locally to the incident wave, the

absorption coefficient is independent of the angle of incidence. For sur-

faces that transmit transverse waves well and rapidly, the coefficient is a

function of the incident angle. The quantity as is the mean of a random
assortment of angles and it may be computed on the basis of laboratory

measurements or it may be determined from the reverberation properties

of "live" rooms. It is often less than an . Table 8-1 lists values of the

Sabine coefficient for various materials.

TABLE 8-1*

VALUES OF THE SABINE COEFFICIENT as

Frequency (cycles-sec
-1

) 128 512 1024 4096

Acoustic plaster 0.30 0.50 0.80 0.50

Brick wall, unpainted 0.02 0.03 0.04 0.05

Carpet, lined 0.11 0.37 0.34 0.24

Curtains, light 0.04 0.11 0.25 0.30

Curtains, heavy 0.10 0.50 0.80 0.75

Floor, concrete; 0.01 0.02 0.02 0.02

Floor, wood 0.05 0.03 0.03 0.03

Temcoustic F2 (when attached to plaster or

concrete) 0.33 0.54 0.52 0.42

Ventilator grill 0.50 0.40 0.35 0.25

Human body, seated (assuming an exposed

body area of 9 ft
2
) 0.17 0.42 0.56 0.50

* Based on Bull. Acous. Materials Assoc. 7, 1940.

It is to be noted that as is a function of the frequency, the values usually

being somewhat lower at the lower frequencies. This dependence upon

frequency is to be expected, from the complex nature of specific acoustic

impedance. It is unfortunate that the middle and high frequency bands

of the audible spectrum suffer greater absorption than do the low fre-

quencies, since the former are the important components of speech. A
recent solution to this problem will be mentioned presently.

A third group of absorption coefficients, called "chamber" absorption

coefficients, are characteristic of certain particular chambers of definite

size and shape where special conditions of intensity distribution, etc.,

lead to special values of a. For each such coefficient, the conditions of

measurement must be described.
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8-16 Use of panel resonance. By the use of care-

fully selected panel resonances the relatively low

values of the absorption coefficient at the lower fre-

quencies, characteristic of most wall surfaces, may be
replaced by values considerably higher. An elastic

panel may be so constructed and supported that it

will resonate at some particular low frequency. At
the resonance frequency the average value of zn at

the surface will be low, since the reactive part will

be zero and only the resistive component will remain.

At this particular frequency, zn takes on a value much
closer to the pc of free plane waves in air and greater

absorption is encouraged. In order to absorb a band
of frequencies, the wall structure may be broken up
into a large number of panels of assorted resonant

frequencies (Fig. 8-8). In this way the wall becomes
virtually a " band-pass filter," similar to a filter of

the electrical variety.

Resonant
areas

Fig. 8^8. The use

of resonating panels to

improve the low fre-

quency absorption by
walls.

8-17 Absorbing "layers." The effect of thickness. If laboratory

measurements of the value of zn or an are made at the surface of an actual

sample of absorbing material, the results will be determined in part by
the particular backing used. If the sample is fastened to wood, plaster, or
any other material which is itself a good reflector, internal reflection at the
boundary between the sample and the backing may return much energy to
the air. A complete circuit analogy can be set up and the general results for

any type of lamination can be predicted. In general, a surface material
of high absorption coefficient and as thick as construction will permit is

the most desirable. It is equally desirable that the material attenuate as
rapidly as possible what energy does cross the surface boundary, in order
to reduce the internal reflection just referred to. Porous materials supply
such attenuation through viscosity and heat conduction effects along the
minute ducts. The fibers of such materials themselves move in the
presence of a wave, and the resultant internal friction also increases

attenuation. All these factors, together with the important effect of the
thickness of the material upon the emerging intensity of the internally

reflected wave, are automatically taken into account in the measurement
of zn and of an . Measurements should be taken with a thickness of sample
and a type of backing characteristic of the use to which the material is to
be put,
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8-18 Good reflectors and good absorbers. We have thus far stressed

the quantitative features of the reflection and absorption of sound waves

at boundaries of various sorts. Now let us consider what constitutes a

good reflector for plane waves. Plainly, this would be a boundary at

which the acoustic impedance is widely different from that characteristic

of free plane waves in air. For many substances such as liquids or solids

of the hard plaster or cement type, zn is much greater than pc and is often

largely real in character. To compute the actual fraction of the incident

energy which will be absorbed, we must know the value of zn (or an) and

then proceed as in Section 8-14. Conversely, a good absorber must be a

poor reflector. The quantity zn at the surface should approach as closely

as possible the numerical value of pc for plane waves in air and should be

real, so that a maximum fraction of the power in the incident wave may

cross the boundary and never return.

A "perfect" reflector or a "perfect" absorber is quite unattainable.

As a matter of fact, such a boundary would be highly undesirable, as we

shall point out when we consider room acoustics in Chapter 12. By

understanding the basic factors controlling the degree of reflection or

absorption, we can usually design surfaces and materials which fulfill the

necessary requirements.

PROBLEMS

1. (a) Find the expression for the

ratio of the condensation s in the reflected

wave to the condensation in the incident

wave (for normal incidence), (b) What
is the ratio of s in the transmitted wave to

s in the incident wave?

2. A sound wave in air of pressure

level 10 db strikes, with normal incidence,

a boundary between the air and a second

medium of large extent for which c = 84

cgs units. Find (a) the rms pressure in the

reflected wave, (b) the rms pressure in the

transmitted wave, and (c) the phase rela-

tionship at the boundary between these

two instantaneous pressures and the in-

stantaneous pressure in the incident wave.

3. If sound waves in air strike the

surface of a second medium of large extent

with normal incidence, what must be the

value of zs for the second medium such

that one-half of the incident energy returns

to the air?

4. Will an open window allow sound

waves of all frequencies to pass through

undiminished? Give reasons for your

answer.

5. A cylindrical tube is closed by a

flat plate of negligible mass mounted on

a spring, as in Fig. 8-4. The spring

constant is 10 4 dyne-cm-1 ; the cross-

sectional area of the tube is 15 cm2
. A

longitudinal wave in the tube, of frequency

100 cycles-sec
-1

, impinges upon the plate,

imparting to it a velocity of rms value

6 cm-sec-1. Find the rms acoustic pres-

sure at the surface of the plate.

6. A viscous force of friction is added

to the plate-spring system of problem 5.

This force is 20 dynes per unit velocity

(in cm-sec-1), (a) Find the acoustic pres-

sure at the plate required to impart to the

plate the same rms velocity as in problem

5, that is, 6 cm-sec-1 , (b) Determine the

average power delivered to the plate-spring

system under these conditions.
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7. A cylindrical tube of diameter 4 cm
is closed by a structure similar to that

shown in Fig. 8-7, there being a large

number of small air channels. The aver-

age value of z„ over the cross section of the

tube is measured at the position aa, using

waves of a certain frequency, and is found

tobe«„ = 15 + j5. (a) What is the phase

angle between the pressure and the particle

velocity just in front of the position aa?

(b) If the rms pressure at the position aa

is 3 dyne-cm-2 , what is the average rate

of loss of wave energy at the boundary aa?

8. The maximum pressure in the

reflected wave in the air just in front of

an absorbing surface is one-half the value

in the incident wave, and pr lags p» by a

phase angle of 45°. Making use of Eqs.

(8-23) and (8-24) and using the mathe-

matical procedure suggested in Section

8-14, find the real and imaginary parts of

the acoustic impedance z„ at the boundary,

(b) Compute the absorption coefficient

an-

9. A plane sound wave strikes with

normal incidence an isolated small disk of

absorbing material whose diameter is

small compared with the wavelength.

Will the value of zn at the surface of the

disk under these conditions be the same
as if the disk were at the end of a close-

fitting cylindrical tube along which are

traveling plane waves? (Compare with

problem 4.)



CHAPTER 9

SPEECH AND HEARING

9-1 Importance of the subjective element in acoustics. The primary
interest of human beings in the subject of sound arises because of the

acoustic equipment in the possession of every normal person, the voice

apparatus and the hearing mechanism. Since these two pieces of equip-

ment make possible one of the most important channels of communication
between individuals, it is important that we understand, as far as possible,

their physical structures and modes of operation. Physical structure

can be determined by dissection, but the complete physics of the production

of speech and of the hearing process is another matter and, especially in

the case of hearing, many uncertainties still exist. . Apart from the lo-

calized complexities qf the mechanisms themselves, there are links with

the psychological whose exact nature is difficult to discover by the usual

procedures of experimental physics.

It will be the purpose of this chapter to describe briefly the voice and
hearing mechanisms and to summarize the essential physics of their opera-

tion, as far as it is known today. Many of the peculiarities of hearing

will be presented descriptively, with no attempt at explanation.

9-2 The vocal apparatus. The energy associated with speech or with

the singing voice originates with the forcible expulsion of air from the lungs.

This steady stream of air may be looked upon as a " carrier" of energy,

just as is the steady stream of air entering an organ pipe. In order for

there to be audible sound, there must be a periodic variation in velocity

(and hence in pressure). This necessary "modulation" is brought about

in two basic ways, the type of sounds so produced being called, respectively,

voiced sounds and unvoiced or breath sounds.

The voiced sounds include the vowels of ordinary speech and the tones

which predominate in the singing voice. The fundamental modulating

organ is the larynx, across which are stretched two membranelike bands.

These are the vocal cords. In the production of voiced sounds, air is

forced through a rather narrow slit between the bands, whose flexibility

allows them to yield under the pressure of the air stream. The result

is a widening of the slit, with a resultant rush of air and a consequent

drop in the pressure. The membranes then return to their original posi-

tions and the phenomenon is repeated. The action of the vocal cords is

thus seen to be fundamentally that associated with a relaxation oscillation.

Their behavior is similar to that of the reeds of certain musical instru-

202
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merits, that is, motion induced in this manner converts a steady flow into a

periodic one, and so makes sound waves possible.

As with any oscillation of the relaxation type, one would expect the

generation of a fundamental frequency along with a large number of very

prominent higher harmonics. The value of the fundamental frequency,

and hence of the range of frequencies covered by the harmonic series, may
be varied considerably by voluntary control of the tension of the vocal

cords. This primarily accounts for the range in basic pitch of the speaking

or singing voice. The numerous resonating cavities both above and below

the larynx have a large number of assorted natural frequencies which do
not necessarily bear a whole number relationship. Such resonances con-

tribute in a very important way to the frequency content in the emitted

sound and, in addition, their presence accounts for the existence of certain

inharmonic frequencies.

It is possible for the vocal equipment to give rise to sound without

use of the vocal cords. Such sounds are called breath sounds. A steady

forcible exhaling of the breath will produce a hissing sound like that of

escaping steam. This is also a result of relaxation effects due to the

turbulence set up in the flow of air around the numerous irregularities

along the vocal tract. An analysis of this type of sound reveals a band
of practically continuous frequency coverage largely confined to the

upper portion of the audible frequency range. As we shall see presently

in connection with speech, it is the existence of this type of breath sound
that makes whispering possible.

A third type of sound results from a combination of voiced and breath

sounds. Such sounds as "zee" belong to this classification.

9-3 The speech process. A steady-state analysis of the frequency

content of the various intoned vowel sounds has been made by Fletcher.*

Figure 9-1 shows the relative amplitudes of the harmonic terms for several

such sounds. Although the lowest frequency gives the characteristic

pitch recognized by both the speaker and the listener, higher frequencies

are more often than not of greater prominence (just as with some of the

notes played on the violin). For the sounds "oo" and "oh," for instance,

the most prominent frequencies are the third and fifth harmonics, respec-

tively, even though the fundamentals are identical (Fig. 9-la and b) . For
the sound "ee" (Fig. 9-lc), there are important harmonic frequencies as

high as 4300 cycles-sec-1 , the series from about 2500 cycles up being fully

as prominent as the group below 2500 cycles.

Fletcher, Speech and Hearing, D. Van Nostrand Co. (1929), pp. 51-55.
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The variation in the harmonic content of the different vowel sounds

is brought about by a deliberate variation of the size and shape of the

constrictions along the vocal tract, the position and shape of the tongue,

the shape of the mouth opening, etc. In a rather complicated manner this

alters the nature and extent of the various resonances along the way,

thus controlling the relative prominence of the numerous frequencies set

up at the larynx.

A single intoned vowel does not convey speech information. The process

of speech may be described somewhat as follows.* As has been pointed
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Fig. 9-1. Relative prominence of frequency components in intoned vowel sounds.

out, the production of audible sound in the vocal tract is a process of modu-

lation impressed upon the carrier motion, in this case the steady velocity of

the expelled air. A voiced sound originating in this manner and containing

a steady-state mixture of frequencies may now itself serve as a carrier for

speech information contained in a second type of superimposed modulation

associated with word formation. The steady sound wave may be compared

to the carrier wave generated by a radio transmitter. In the latter

case the wave form is sinusoidal and of course is of a frequency above

* For a fuller discussion of this view of speech, see Dudley, "The Carrier Nature

of Speech," Bell System Jour. 19, 496 (1940).
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audibility, whereas in the case of a steady voiced sound the wave form is

complex, since there are many frequency components which lie within the

audible range. Both carriers are nevertheless similar in that no informa-

tion is conveyed by their mere steady-state existence. In the electromag-

netic wave the information is impressed upon the carrier in several ways,

the most common types of modulation being change of amplitude and of

frequency. The complicated actions of the vocal tract described above

accomplish the same thing in the acoustic wave. For speech, the modula-

tion rate, i.e., the time rate of change from one speech sound to another

(as from one vowel to another vowel) is very low, the effective frequency

for this variation being far below audibility. The amplitude type of modu-

lation seems to be more important for conveying information, although

frequency modulation of the carrier plays an important part, for instance,

in the speech attribute known as inflection.

Just as the collection of frequencies set up by the vocal cord action

may serve as the carrier for speech modulation, so may also the breath

sound referred to earlier. It is this carrier whose frequency composition

resembles that of a continuous spectrum, which is so essential to the

production of the consonant sounds. Like the voiced sound, the breath

sound may be modulated by altering the configuration of certain features

of the vocal tract. In actual speech, containing vowels and consonants,

use is made either alternately or simultaneously of both voiced and breath

sound carriers. In whispering, the breath sound alone serves as the

carrier. It would thus seem that the exact nature and characteristics

of the carrier are of much less importance than the modulation imposed

by the speech information. This has, of course, been found to be true

for a large variety of electrical carrier waves.

9-4 The vocoder. An interesting speech-synthesizing circuit known as

the vocoder demonstrates the carrier nature of speech. By means of

electrical filter circuits the original carrier components are removed from

a certain sequence of speech sounds. The modulation containing the

information is retained and then impressed electrically upon an artificial

carrier. For the voiced type of carrier an electrical oscillator of the re-

laxation type may be used. For the breath variety of carrier, a gas-

filled tube will supply a "hisslike" output. When the low frequency

modulation carrying the speech information is impressed upon either car-

rier, intelligible speech sounds result.

One of the interesting outgrowths of the studies of Dudley on the carrier

nature of speech is that almost any carrier sound wave of mixed frequency

content may be used. Even orchestral music may be used to transmit
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speech information, if it has a reasonably constant intensity level, and

provided it is modulated at the proper rate, determined by the speech

characteristics.

9-5 Energy distribution in speech as a function of frequency. Many
measurements have been made of the energy distribution among frequencies

involved in ordinary speech. Most of the earlier data must be credited

to the Bell Telephone Laboratories, whose interest in the subject is quite

Frequency in cycles-sec" 1

Fig. 9-2. Pressure-frequency distribution in normal speech.

understandable. Crandall found that for the average male voice the

energy peak lies in the neighborhood of 120 cycles-sec
-1

; for the average

female voice the peak occurs at about twice this frequency. The many
harmonics above these frequencies are associated with very low relative

energy.

Some recent data along these lines, recorded at Harvard University,*

are represented in the graph of Fig. 9-2. The voices of seven different

men were studied, each one speaking the sentence: "Joe took father's

shoe bench out; she was waiting at my lawn." This quaint and decidedly

unliterary sentiment was chosen because of the wide variety of representa-

tive speech sounds it contains. The horizontal axis of the graph, is fre-

* Rudmose et al., Jour. Acous. Soc. of Amer. 20, 507 (1948).
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quency, plotted on a logarithmic scale. The ordinates represent rms

sound pressures, each point on the curve signifying the average pressure

level over a band width of one cycle for the time during which the test

sentence was being spoken. (The measurements involved the use of

electrical filters and integrating circuits.) The central curve within

the shaded area is an average for the seven voices. The limits of the shaded

area are drawn so as to include all the separate curves representing individ-

ual characteristics and therefore to give some idea of the spread among the

test subjects. As may be seen, there is a progressive falling off in sound

pressure above 800 to 1000 cycles-sec"1
, indicating that by far the greater

part of the energy in speech is carried by the lower frequencies. Since

the vertical scale of the graph corresponds to the pressure level, it may be

considered an intensity scale. It is interesting to note that the average

total acoustic power in the typical speech of a single individual was of the

order of 30 microwatts (1 microwatt = 10-6 watt). This value assumes

hemispherical distribution.

9-6 Intelligibility of speech as related to frequency band width. Al-

though most of the energy of speech is concentrated in the lower frequency

regions, it must not be concluded that the upper frequencies are of negli-

gible importance for purposes of communication. The higher frequencies

constitute the main carrier for the important parts of the speech message

associated with consonant production; speech with the consonant sounds

removed is notoriously difficult to understand.

Much data on the essential factors governing the intelligibility of speech

have been reported in the technical journals, and standard test sounds,

syllables, words, and sentences have been devised. The tests and the

method of analysis of the results are described by Fletcher.* Interesting

experiments have been performed wherein certain frequencies and bands

of frequencies within the speech range have been suppressed by means of

electrical filters. Data were taken on the observed articulation of certain

sounds and syllables (the portion correctly recognized) and also on the

intelligibility of sentences (the portion representing correct thought recep-

tion). All the data point to the primary importance of the upper fre-

quencies. In fact, the use of a filter designed to eliminate all frequencies

below 500 cycles-sec
-1

still permits an articulation score of 98%. For some

of the consonant sounds the cutoff may be placed as high as 1500 cycles-

sec
-1 with negligible effect upon the articulation. Frequencies up to at

least 3000 cycles-sec
-1 are important; frequencies higher than this are of

* Fletcher, Speech and Hearing, D. Van Nostrand Co. (1929).
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decreasing importance to articulation and intelligibility. (Much higher

frequencies must be included, however, for facsimile reproduction of speech

quality and musical detail.)

9-7 Miscellaneous voice properties. To the general results summa-
rized in the preceding sections may be added other significant information

regarding the voice. Male voices are usually richer in harmonic content

than are female voices. This is primarily because the lower fundamental

frequencies of the male voice involve harmonics which are in general mul-

tiples of the fundamental and must therefore be more closely spaced in the

frequency spectrum. Despite the differences in fundamental pitch and

harmonic content that distinguish between individuals of the same sex and

also between men and women, the vowel sounds discussed in Section 9-3

are each characterized by certain invariant clusters of closely spaced fre-

quencies. The vowel sound "ah," for instance, has a strong group of

frequencies in the neighborhood of 900 cycles-sec_r for practically all

individuals, the long "ee" sound almost invariably contains two clusters

of frequencies in the neighborhood of 750 and 1600 cycles-sec
-1

respectively,

and for the long "a" sound there are two groups near 500 and 2500.

9-8 Artificial voices. Tests involving human subjects are always labo-

rious and liable to errors of the statistical type. In an effort to Obtain

more standardized test conditions, artificial voice mechanisms have been

developed. The sound source for an artificial voice may be a more or less

conventional loudspeaker unit of appropriate size. In front of the vibrating

diaphragm is placed an acoustically designed structure simulating the

essential impedance properties of the mouth and the mouth opening and

of comparable size (to supply acoustic resistance and acoustic reactance).

Since the diffraction properties of the human head play an important part

in determining the sound distribution pattern, it is often desirable to sur-

round the artificial voice mechanism with a life-sized model of the head.

The use of this standardized equipment facilitates testing of equipment

such as transmitter microphones, for instance.

9-9 The hearing process. The process of hearing may be said to take

place in three stages. A portion of the wave front is first intercepted

by the opening of the outer ear, which funnels the energy through the

auditory canal to the eardrum, separating the inner from the outer ear.

At the eardrum, the acoustical energy is transformed (partially) to the

mechanical energy of vibration of the membrane. The second stage con-

sists of the transmittal of this vibrational energy, through the intercon-

nection of several levers, to a second membrane which lies at the entrance
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to the liquid-filled cochlea, a complex structure within which lie the sen-

sation detectors. The final stage is the translation of the physical stimuli

of these detectors, brought about indirectly by the pressure variations set up

within the cochlear fluid, into a definite nerve message to the brain.

9-10 The structure of the ear. An anatomical drawing of the ear

structure is apt to be confusing because of the wealth of nonessential

detail. Figure 9-3 is designed to emphasize the functional features of

the various parts of the ear. The outer, visible part is vestigial in size

Outer ear Inner ear

External ear

Cochlea

Fig. 9-3. Schematic diagram of the ear (scale distorted). (After Stevens and

Davis)

and shape and adds little to the collecting power of the auditory canal.

(In many animals the external part of the ear is large and mobile and is

more important acoustically.) The auditory canal, about 3 cm in length,

may be considered as a pipe closed at the inner end by the eardrum. The

calculated fundamental resonance of such a pipe occurs at approximately

2700 cycles-sec
-1

, not far from that at which the average ear is most sen-

sitive. The sensitivity of the ear, however, falls off much more slowly

with frequencies lower or higher than 2700 cycles-sec
-1 than would be

expected on the basis of a pipe resonance.

The eardrum (tympanic membrane) is stretched tightly across the inner

end of the auditory canal and separates the outer from the middle ear.

The middle ear contains three leverlike bones that serve to transmit the

motion of the eardrum to the oval window, a second membrane which,

in part, separates the middle from the inner ear. The first of these bones,

the hammer, is attached to the eardrum and to the second bone, the anvil,

which in turn is pivoted to the stirrup. One side of the stirrup is attached
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to the oval window. (It is interesting to compare the mechanical structure

of the middle ear to the linkage system employed in the pickup head

of the old-style "acoustical" phonograph.) The structure of the middle

ear, taken as a system of closely coupled parts, has very broad resonances,

due partly to the damping effect of tissue at the joints and partly to the

loading supplied by the liquid on the inner ear side of the oval window.

The response may therefore be described as approximately aperiodic in

character.

The structure of the inner ear has excited great interest among research

workers. The oval window, connected to the stirrup, is one of two mem-
branes closing the end of the important spiral-

m
.

m r

.

v

' shaped cavity called the cochlea. The second

membrane, the round window, completes the clo-

sure of the cavity but is not directly connected to

the stirrup. Figure 9-4 is a diagrammatic side

view of the cochlea. Extending longitudinally

along the turns of the spiral are two mem-
branes, the basilar membrane and the membrane

of Reissner. The latter is very thin and flexible
v^'

and apparently of secondary importance. Figure
Fig. 9-4. Section of the g_5 ig a cross section of one of the turns of the

cochlea, parallel to the axis. .. , ,, , , , ... „,,
cochlea, showing the nearly central position ol the

basilar membrane. Close to the oval window and to one side of the basilar

membrane is the entrance to the semicircular canals, which play no direct

part in the hearing process.

The regions on each side of the basilar membrane contain liquid. Any

motion of the stirrup, such as that caused by the entry of sound waves

into the outer ear, will vary the pressure on the basilar membrane near

the oval window, with a resultant flexure of the membrane itself (Fig.

9-3).

9-11 The organ of Corti. Mounted along the center of the basilar

membrane is the organ of Corti, a structure which has been the subject

of much controversy among physiologists. The most prominent feature of

this complex structure is the arch of Corti, a basic framework upon which

are supported clusters of hair cells from which cilia project into the liquid

above the membrane. As the basilar membrane moves in response to the

pressure changes occurring at the oval window it carries with it the whole

organ of Corti. For some time it was thought that the arch of Corti was

the sensory organ that detects the vibrations set up in the inner ear. It

is now known that the auditory nerves run from the hair cells and that the
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Fig. 9-5. Transverse section of one turn

of the cochlea.

latter are the true organs of sensation. There are five rows of hair cells

along the organ of Corti, totaling about 23,000 in number. The bundles

of auditory nerve channels emerge

from the center of the cross section

of the cochlea, as shown in Fig. 9-5.

9-12 Mechanical properties of

the cochlea. Resonance theory of

Helmholtz. A physicist, familiar

with resonance phenomena for vi-

brating bodies, is naturally tempted

to picture the frequency-sensitive

portion of the ear as made up of a

large number of individual units,

each tuned to a different frequency

in the audible spectrum. Helmholtz, who was certainly part physicist,

first believed that the rods or arches of Corti were the resonators, and that

the vibration of the basilar membrane was the source of excitation of the

arches of Corti. In a later development of his theory, he considered the

fibers of the basilar membrane itself to be the group of resonators. These

transverse fibers are shorter near the base of the cochlea than near the apex.

There are about 10,000 membrane fibers in all; their varying lengths sug-

gest the frequency distribution associated with a stringed instrument

like the harp.

9-13 Other resonance theories. Numerous critics voiced their objec-

tions to the theory of Helmholtz, even during his lifetime. The mechanical

behavior of an individual resonator remained obscure. The stretched

fibers of the basilar membrane appear incapable of resonance over the

wide range required for the ear, especially near the upper frequency limit.

By the end of the 19th century there were, for these and other reasons,

few supporters of the Helmholtz theory.

A number of more recent resonance theories have been suggested.

Among several theories of a similar nature may be mentioned that of

Ewald, proposed in 1898. Instead of concentrating upon a distributed

set of resonators, Ewald considered the basilar membrane as a whole to

be the single resonator for all frequencies, its response being much like

that of a single stretched string. Many difficulties arose, however, because

of the complexity of the stationary wave patterns which might result in

accordance with this theory.

In 1928 Bek6sy began to report upon a series of experiments with me-
chanical models of the cochlea containing a thick membrane simulating
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the basilar membrane. (Ewald had done some experimenting with models,

also.) When excited with sound waves, this membrane was set into a

rather complicated motion which involved vibrations of the sound fre-

quency. In addition, a sort of modulation effect occurred, in the nature

of a traveling envelope of the vibrations. The peak of this vibration

envelope, however, always occurred for any one frequency at the same
point, as measured along the long dimension of the membrane. For low

frequencies this peak occurred near what would be the apex of the cochlea.

For high frequencies its position was near the base. For intermediate

frequencies there were corresponding intermediate positions for the peak.

Bekesy later performed similar experiments with preserved specimens of

human and animal cochlea, and observed motions of the same type, in

agreement with the results of his study of models. These experiments

would indicate that there are certainly mechanical resonant effects within

the cochlea, apparently associated with waves moving longitudinally along

the liquid-filled structure, with the maximum mechanical response occur-

ring, as in Helmholtz's theory (but for quite different reasons), at definite

positions for any one particular frequency.

Various theoretical treatments of the behavior of such a liquid-filled

tube having flexible sides have been given in recent years. Among the

more recent are those of Ranke* and Zwislocki.f Both formulations pre-

dict cochlear resonance very similar to that found experimentally by
Bekesy.

9-14 The organs of sensation. One of the interesting aspects of the

behavior of the cochlea concerns the existence of alternating potentials

within the cochlear fluid in the presence of sound stimulation. These

so-called cochlear potentials follow closely the wave form characteristic

of the original sound disturbance. Since these potentials appear to be non-

existent in the cochlea of animals with normal ear structure except for the

absence of the hair cells, it may be concluded that these hair cells are the

source of the cochlear potentials. Because these cells move with the motion

of the basilar membrane, it seems reasonable to suppose that they are

distorted in shape as the upper ends of the cilia press periodically against

the tectorial membrane immediately above the hair ends. The alteration

in the state of polarization of the outer cell surfaces which results from

this distortion is presumed to be the source of the potentials.

Since the terminations of the auditory nerve fibers are entwined around

the lower ends of the hair cells, it seems likely that, either directly or

* O. F. Ranke, Jour. Acous. Soc. of Amer. 22, 772 (1950).

f Zwislocki, Jour. Acous. Soc. of Amer. 22, 778 (1950).
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indirectly, the potentials developed in the hair cells are responsible for the

nerve impulses associated with the hearing process.

9-15 Frequency perception. As has been seen, the early theories of

Helmholtz and others assumed that the mechanical stimulation of certain

restricted areas within the cochlea accounted for a definite sense of fre-

quency peculiar to that area. Later study has shown the presence of a type

of true resonance phenomenon, but it is so widely spread along the cochlea

that the perception of frequency at a specific "point" seems most unlikely.

In contrast to the point theories described above, Rutherford, Meyer,

and Wrightson, among others, advanced the so-called "telephone" theory.

By this theory the mechanical system within the cochlea is supposed always

to be stimulated more or less as a whole. The mechanism is considered,

like a telephone, simply to serve as a relay to transmit stimuli to the nervous

system, where the true frequency discrimination takes place.

A point of view which, in the main, concentrates upon the stimulation

of the auditory nerve fibers has been described by Wever.* This concept

presumes that for the lower range of frequencies the nerve fibers as a whole

are stimulated (as in the older "tele-

phone" theories), but because of the

"relaxation times" of the individual

fibers, each such unit may "fire" (i.e.,

deliver its impulse) at time intervals

corresponding to, say, five cycles of

the audible vibration. Because of

the large number of such fibers there

will always be some ready to discharge

at each peak of the vibration stim-

ulus and hence the frequency of occur-

rence in the total nerve message will

correspond to that in the sound vibra-

tion (Fig. 9-6). This response of the

nerve fibers in groups has been called

by Wever the "volley principle."

While for the lower frequencies there is seen to be no particular localization

of sensation along the cochlea, there is good evidence from the study of

impaired hearing that sensitivity to frequencies above about 2000 cycles-

sec
-1

is concentrated over the first three-quarters of a turn near the base of

the cochlea (the region sensitive to the very highest frequencies lies near
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* Wever, E. G., Theory of Hearing, John Wiley & Sons (1949).
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the beginning of the spiral). The degree of localization is believed to

broaden from 2000 cycles downward, until at about 500 cycles-sec
-1 the

whole cochlea is effectively a detector.

It is interesting to see that the volley principle does not of itself rule

out the importance of the mechanical resonance properties so well demon-

strated by Bekesy. Wever has been able to combine the data regarding

the variation in the mechanical stimulation along the basilar membrane

with the essential known facts regarding the number and behavior of the

nerve fibers affected. In this way he has obtained a theoretical sensitivity

for the ear as a function of frequency.* The curve representing this

function is in fair agreement with the experimental curve known as the

" threshold of audibility" contour, to be discussed in Section 9-17.

9-16 Hearing data for the normal ear. Under this heading we shall

consider the results of the large number of statistical studies that have been

made on hearing properties. It should be remembered that in this field

we are dealing fundamentally with the subjective aspect of acoustics.

Instruments cannot readily be placed within the hearing mechanism, and

even if that were possible, data so obtained might bear little relation to

the sensation called " hearing." Hearing tests must be performed with

care and the results must be interpreted cautiously. Since the hearing

characteristics of different individuals differ widely, general conclusions

are valid only for the average ear.

9-17 Threshold of audibility. The normal ear is remarkably sensitive

to sound waves of very low intensity, the low intensity limit being of the

order of 10~9 erg-cm-2-sec-1 , the usual reference for intensity level. The
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Fig. 9-7. Thresholds of audibility. (After Beranek)

* Wever, op. cit., p. 296.
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threshold of audibility is usually expressed in terms of the lowest rms acoustic

pressure to which the ear will respond, and it varies markedly with the

frequency. In Fig. 9-7 are shown three curves plotting the threshold of

audibility against frequency. Curve 1 was taken with one ear only, the

stimulation originating with an earphone and the sound pressure being

measured at the ear. Curves 2 and 3 were taken with the listener in a

sound field, making use of both ears. The pressure in the field was meas-

ured before the subject entered it. For curve 2 several scattered sources

were used and for curve 3 a single source was placed in front of the listener.

Despite the differences among the curves, all three show the maximum ear

sensitivity to be in the neighborhood of 3000 cycles-sec
-1

. (The wavy

appearance of curve 3 is due to the diffraction effects of the head.) All

three curves represent averages of data taken for a large number of subjects.

9-18 Loudness and loudness level. In our discussion of objective

sound phenomena, we have been careful to use the word intensity instead

of loudness because, as was pointed out, the two concepts are not identical.

Loudness is a purely subjective quantity, not directly measurable with

instruments. Loudness increases with intensity, but there is no obvious

linear relationship. Each of several sounds may be classified by a listener

as twice, five times, or perhaps ten times as loud as another. A scale

of loudness based entirely on this type of average listener reaction has been

devised. The fundamental unit is the sone, defined as the loudness of a

pure 1000-cycle note whose pressure level is 40 db (a smaller unit, the

millisone, equal to .001 sone, is often used). A sound five times as loud

as the 1000-cycle, 40-db note would differ from the latter by a loudness of

four sones.

Loudness level in phons-

10,000 20,000

Frequency

Fig. 9-8. Loudness level contours.
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The loudness level of a tone of any frequency is denned numerically

as the sound pressure level (in db) of a 1000-cycle-sec
-1 tone which sounds

equally loud to the listener. Loudness level is expressed in phons. The

meaning of loudness level will be made clear by an inspection of Fig. 9-8.

The curves are contours of equal loudness for a variety of sound pressures

ranging from the threshold of audibility to what is sometimes called the

upper threshold of feeling (where the sound becomes painful to the listener).

The sound pressures in the free field were measured before the entry of the

subject. It will be noted that the numbers corresponding to the loudness

level in phons and the sound pressure level in decibels coincide in every case

at 1000 cycles-sec
-1

, in agreement with the definition of loudness level.

At lower and at higher frequencies, however, the contours bend upward,

the rise for the threshold of audibility at the lowest frequencies being as

much as 70 db. Interpreting the general shapes of the contours, one may

say that except for very high-level sounds the ear requires much greater

sound pressures at low and at high frequencies to match the loudness at

the middle frequencies. From curve 4 it will be noted that at 30 cycles-

sec
-1 a sound of loudness level 30 phons will have a sound pressure level

(referred to the usual zero reference level) 50 db higher than at 1000 cycles-

sec
-1

. The pressure ratio corresponding to 50 db is 316, so it is obvious

that the ear's sensitivity at 30 cycles-sec
-1

is far below that at 1000 cycles-

sec
-1

.

Data for the plotting of equal loudness contours are relatively easy

to obtain. A calibrated source of variable frequency, producing a known

intensity at the point of pressure measurement, is adjusted by the auditor

until to his ear a 100-cycle note, for instance, and a 1000-cycle note are

identically loud. The pressure level produced by the 1000-cycle note is

then the loudness level in phons for both notes. Since the pressure level

of the 100-cycle note is known, two points for the loudness contour have

been determined. The process is repeated for the determination of other

contour points.

The relationship between loudness level and the quantitative subjective

sensation called loudness is interesting and important but is difficult to

determine with accuracy. One experimental procedure is as follows. A
calibrated frequency source is first adjusted so as to produce a 1000-cycle

note at a pressure level of 40 db. By definition, the loudness is then

1000 millisones. The intensity of the note is next altered until it seems to

a listener to be, say, one-half as loud. The loudness is then 500 millisones

and the corresponding pressure level can be read from the calibrated source.

Similarly, the pressure level corresponding to 2000 millisones, say, is

determined by adjusting the intensity until the note seems to be of twice

its original loudness. Similar measurements at a sufficient number of



9-18] LOUDNESS AND LOUDNESS LEVEL 217

different intensities enable loudness to be determined as a function of

pressure level. The latter is in this case also loudness level, since the

frequency we have selected is 1000 cycles. The relationship between

loudness and loudness level at other frequencies can be determined by

making use of the contours of Fig. 9-8.

Figure 9-9 is a plot of loudness, determined as above, against loudness

level as a parameter.* It is interesting to study the shape of this curve
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Fig. 9-9. Relationship between loudness and loudness level.

in the light of the assumed law of sensory response referred to in Section

2-20. If, as was suggested, the response is proportional to the logarithm

of the stimulus, we might expect the actual loudness numbers to be linear

with the decibel scale of loudness level (this scale being logarithmic).

This is approximately so for loudness levels below about 15 phons but

for higher levels there is considerable deviation from linearity. The broken

curve of Fig. 9-9 indicates the hypothetical shape if loudness were strictly

linear with loudness level. (Such a curve will not be straight on this

graph because loudness has been plotted on a logarithmic scale.) At

Fletcher and Munson, Jour. Acous. Soc. Amer. 9, 1 (1937).
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higher sound levels the loudness increases much faster than the response

law would predict.

9-19 Differential intensity level sensitivity of the ear. In introducing

the decibel scale of intensity comparison earlier, it was mentioned that a
difference of about one decibel is necessary before a change in intensity is

discernible by the ear. Actually, this minimum detectable change in

intensity level varies greatly with the intensity itself, the frequency, and,

to some extent, the complexity of the sound. The curves of Fig. 9-10 show
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Fig. 9-10. Curves showing sensitivity of the ear to changes in sound pressure.

(After Fletcher)

the minimum detectable change in intensity level as a function of intensity

and of frequency.

Smaller changes in intensity can be detected at high sound levels than

at low levels. Also, the differential sensitivity of the ear is much less at

high and at low frequencies than it is at the middle frequencies. At a

sound pressure level of 80 db and for a frequency of 2000 cycles-sec-1 (the

most favorable conditions), the ear is aware of changes as small as 0.25 db;

on the other hand, near the threshold of audibility changes of the order

of 5 to 10 db produce barely audible effects for the very low and the very

high frequencies.

9-20 Pitch vs frequency. The words pitch and frequency are com-

monly used interchangeably, but in acoustics frequency is always the objec-
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tive vibration rate, while pitch is reserved for that subjective sensation by

which the listener classifies a note as high or low. Conversion scales have

been devised whereby one may relate pitch to frequency numerically,

just as one relates loudness to intensity. Such scales are based largely

on psychological tests.* The relationship is intimately connected with

theories of hearing. We shall confine our attention here to several special

aspects of this part of the hearing process.

9-21 Differential frequency sensitivity of the ear. In Fig. 9-11 are

shown graphs of the ratio A/// plotted against frequency, where A/ is the

minimum detectable frequency shift, f Curves are given for four different
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sound pressure levels. Clearly, the differential frequency sensitivity of

the ear, treated as a fraction of the frequency, is greatest for the frequencies

above about 1000 cycles-sec-1 and becomes relatively poor at frequencies

below that. In general, sensitivity decreases with the sound intensity.

These data are for pure tones only. The ability of the ear to detect an

off-pitch note in the low register of the piano is not necessarily as poor as

these data might indicate. The low piano notes are rich in harmonics,

* Stevens and Volkman, Am. J. Psychol 53, 329 (1940).

f Shower and Biddulph, Jour. Acous. Soc. Amer. 3, 275 (1931).
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especially if struck vigorously, and the presence of the higher frequencies

makes possible greater frequency discrimination.

It will be noted (Fig. 9-11) that at a 10-db level a 30-cycle note must
be changed in frequency by 9% (i.e., to 32.7 cycles-sec-1) before a change

in pitch is detectable. Hence two pure notes of frequencies 30 and 32

cycles-sec
-1 respectively will have nearly identical pitch. This is one

example of the importance of using the words pitch and frequency carefully

and properly.

On the basis of the graphs of Fig. 9-11 one may compute the total num-
ber of frequencies distinguishable by the average ear within any given fre-

quency interval. The number will obviously be greatest for the frequency

range above about 1000 cycles-sec
-1

. About midway between the threshold

of audibility and the threshold of feeling, for instance, there are something

like 10,000 distinguishable frequencies in the range from 1000 to 2000

cycles-sec
-1

. The number in a 1000-cycle interval is smaller at the high

frequencies and very much smaller at the low frequencies.

9-22 Shift in pitch (or apparent frequency) at high intensities. When
the ear is exposed to a pure note of constant frequency and of great intensity

(a sound pressure level of 60 db or more), there is an apparent change in

the frequency (or in the pitch sensation) . This change is usually a decrease,

the amount of the change being a function of the frequency of the source
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and the intensity at the ear. The graphs of Fig. 9-12 are from data by

Snow.* Apparent frequency changes are given in percent, all changes

being negative. Data by Fletcher indicate a slight rise in pitch for fre-

quencies above 2000 cycles-sec"1
. The 10% change indicated in some cases

is not unusual. Many listeners can detect a drop in apparent frequency

when certain loud notes are sounded on the organ, an instrument of great

acoustic power. This may be due to actual fluctuations at the source

because of large air amplitudes in the pipe or may be an effect occurring at

the ear.

9-23 Masking. The phenomenon of the masking of a useful sound by

the presence of background noise (noise being undesired accompanying
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sound, usually consisting of a heterogeneous frequency mixture) is a familiar

one. From a practical point of view it is necessary to know by exactly how

much the level of useful sound must be raised in order to be just detectable

or, in the case of speech, just intelligible above background noise. It turns

out that only the frequencies adjacent to the frequency of a useful pure tone

affect the masking. The band width of such pertinent frequencies varies

with the desired frequency. The curve in Fig. 9-13 shows the variation

in band width plotted against the frequency of the desired pure tone.

The spectrum level for a random background noise in the neighborhood of

any one frequency may be defined as the effective pressure, due to the

noise, in a portion of the band one cycle in width. Fletcher has shown

* Snow, Jour, Acous. Soc. Amer. 8, 14 (1936).
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that to be barely audible, the level of a pure tone must be raised above

the spectrum level a definite number of decibels directly related to

the band widths just mentioned. The numbers corresponding to this

critical level increase are shown in the figure in relation to various band
widths. Such data are of great value in acoustical engineering, for

instance in the problem of designing public address systems for noisy

factories.

9-24 Sum and difference frequencies. As was emphasized in Chap-
ter 1, the phenomenon of beats does not indicate a true difference frequency.

The so-called beat frequency is merely a slow periodic variation in the

amplitude of the sum effect of two higher frequencies. Mathematical

analysis will fail to reveal the presence of a third frequency component,

if the primary frequencies represent pure simple harmonic vibrations. It

is nevertheless possible to hear difference frequencies under certain condi-

tions and even to detect them objectively with instruments of the micro-

phone type.

One clue to the existence of these combination frequencies lies in the

general requirement that for their production the two primary tones must
be of high intensity. Vibrations of large amplitude at the source will call

into play both nonlinearities of source properties and of the behavior of the

air immediately surrounding the source. That is, we may no longer con-

sider the vibrations in the medium to be of the small amplitude type. Any
nonlinearity in a transfer process results in intermodulation, which simply

means that when two SHM's co-exist, the amplitude and wave form of

one of the frequencies is affected by the presence of the other. It can be

readily shown that any modulation process is equivalent to the production,

among other things, of sum and difference frequencies. Once such fre-

quencies appear near the source, they will propagate and, if of sufficient

intensity, will affect the ear. The greater the amplitude of the two primary

vibrations, the greater will be the amplitudes of the sum and difference

frequencies (this is the reason why these effects are observed in general

only with sounds of high intensity)

.

It is sometimes possible to detect difference frequencies when the primary

sounds are of only moderate intensity. Under these conditions it is prob-

able that nonlinearities somewhere in the hearing process are responsible.

If, for instance, the eardrum were stiffer for inwardly directed forces than

for those directed outward, its motion during the sound cycle would be

asymmetrical, as indicated in Fig. 9-14a, and the symmetrical pattern

associated with beat formation would be distorted to the shape shown in

Fig. 9-14b. Such distortion amounts to what is called "partial rectifica-
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tion" in an electrical circuit. Figure 9-14c shows how this rectification

has brought into existence the true difference frequency.

Studies of the electrical characteristics of the nerve action associated with

the hearing process reveal certain marked nonlinearities in behavior. It

therefore seems likely that these characteristics are more important in

(c)

Fig. 9-14. Possible rectifying action of the ear.

accounting for the combination frequencies not present in the original

acoustic wave than are the nonlinearities in the mechanical behavior of

the ear mechanism, at least for sounds of moderate intensity.

For sound waves of average intensity and when many frequencies are

received simultaneously, the sum and difference frequencies are so weak

as to be of negligible importance for ordinary hearing purposes.

9-25 The response of the ear to a harmonic series. As we have pointed

out, many of the notes played on musical instruments are rich in harmonics,

some of which may be more prominent than the fundamental. Presented

with an array of frequencies constituting a harmonic series, the ear will

still assign a characteristic pitch to the combination, this pitch being that
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associated with the- fundamental frequency of the series. So definite is

this pitch sensation that it is possible, by means of filters, to eliminate the

fundamental frequency entirely without any observable effect upon the

pitch ! The ear apparently will supply the fundamental, provided the cor-

rect harmonics are present. It is this rather surprising property of the

ear that enables a small loudspeaker, inadequately baffled, to give the im-

pression of good radiation in the low frequency region. Because the

speaker is a fairly efficient radiator for the frequencies of the harmonics,

the listener believes he is actually hearing the low frequencies, when instead

he is hearing only multiples of these frequencies and his ear is supplying

the fundamental. It is possible, by deliberate distortion of the harmonics

associated with low musical notes, to make a very small radio set, totally

inadequate in the low frequency range, sound somewhat like a larger,

acoustically superior console set. Such synthetic bass is, to the critical

ear, inferior in sound to true bass reproduction, where the harmonic content

is closer to that of the original sound.

It seems likely that this whole phenomenon is capable of explanation

in terms of the production of difference frequencies somewhere in the

hearing process, as discussed in the previous section. The difference in

frequency between the various terms in a harmonic series is, of course,

identical with the frequency corresponding to the fundamental of the series.

9-26 The importance of the transient period to sound quality. Phase

effects. Many of the vibrations characteristic of speech and music are

transient in nature and not susceptible to the conventional Fourier analysis.

Such short duration motions have certain build-up and decay times whose

particular values contribute in an important way to the over-all quality

as perceived by the ear. Fletcher has recently demonstrated a remarkable

synthesizer for artificially reproducing with startling realism the quality

typical of various musical instruments. Both the steady-state harmonic

content and the proper build-up and decay time constants of the transient

components are included in the simulation. The transient features are

particularly important in the case of the drum, since the motion of the

drumhead is highly damped and the membrane is excited by a single blow.

Such a synthesizer, largely electrical in design, has considerable flexibility

of adjustment and would seem to lend itself, as Fletcher suggests, to the

development of new interesting sound qualities unobtainable with standard

musical instruments.

Ordinarily the phase relationships between the various frequency

components in a complex sound are of negligible importance. The ear

seems to be a fairly effective Fourier analyzer, responsive primarily to
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the frequency structure in the wave and with little regard for over-all

wave shape. The wave shape, of course, is radically affected by the

relative phases. There are some exceptions to these statements. In the

case of steep-fronted pulses, phase is apparently of some importance. In

the field of steady-state sounds, experiments by Firestone and his associ-

ates * indicate some change in loudness level and observed quality with the

shift in relative phase of a single frequency and its second harmonic, both

being sounded together. Some of these effects are attributed to nonlineari-

ties in the hearing process and are apparently of minor importance in the

case of a general mixture of sound of the musical variety. For instance, in

building electronic amplifiers for acoustical purposes no particular care

need be taken to eliminate phase shifts in the circuits. Such shifts, even

though they are different for different frequencies, do not appreciably alter

the effect of the final reproduced sound.

9-27 Binaural effects. The ability of a person equipped with two

good ears to locate the direction of a small source of sound is well known.

There is no complete agreement as to the mechanism of this direction

sensitivity but it seems likely that for frequencies below about 1500

cycles-sec
-1

it is largely due to the difference of phase in arrival at each of

the two ears. Rayleigh recognized that phase is related to binaural hearing.

Experiments by G. W. Stewart f and by Hartley and Fry J showed the

effect of shifting the relative phases of two sounds of the same frequency

fed independently to each ear. With no phase difference, the apparent

position of the source was directly in front of the individual. With a

gradual shift in phase the sound source could be made to "move" to the

right or to the left, the direction being towards the ear receiving the

leading phase. When listening to sound sources in free space one would

expect phase effects to play a part only for those frequencies where the

wavelength is some appreciable fraction of the distance by which the two

ears are separated. At higher frequencies, the wavelength is much smaller

than this distance; hence only intensity differences could conceivably give

a sense of direction. By varying the relative intensity at the separate

ears Stewart did produce directional effects, although the degree of angular

shift was smaller than that produced by simple phase shift. The actual

interpretation of phase or intensity differences probably occurs in the

* Chapin and Firestone, Jour. Acous. Soc. Amer. 5, 173 (1934).

^Phys.Rev. 15,425 (1920).

XPhys. Rev. 18, 431 (1921). Also see Kock, Jour. Acous. Soc. Amer. 22, 804

(1950) for a consideration of "conscious" binaural localization.
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nervous system or in the brain, rather than in the mechanisms of the

ear.

Regardless of the explanation, the aural perception of direction is cer-

tainly real. Some attempt at further realism in the reproduction of music

has been made along these lines. It is possible to pick up sound from the

various sections of an orchestra, send the electrical equivalent of the sound

from each section through separate electrical channels, and finally deliver

the energy separately to loudspeakers arranged in the same relative posi-

tions as the sections of the original orchestra. This is a complicated pro-

cedure and has been attempted only on a limited experimental scale. It

does result in greater musical realism.

9-28 Hearing defects. The anatomical and neurological details of the

causes of deafness, partial or complete, belong to the subject of physi-

ology and medicine and will not be considered here. The superficial facts

of hearing impairment are, however, clear enough. The threshold of hear-

ing curve varies widely in shape and general level even among so-called

normal ears. When the level is raised unduly, the hearing is said to be

impaired. It is a relatively simple matter to prepare audiograms which

represent the threshold of hearing as a function of frequency. The thresh-

old may be higher over some particular part of the spectrum or there may
be a general, more or less uniform rise from the lowest frequency to the

highest. A decreased sensitivity for the upper frequencies is especially

unfortunate, of course, since this part of the spectrum is so essential to the

intelligibility of speech.

An amplifier of the hearing aid type is the usual tool of the partially

deaf but a simple rise in the level of all received sound is not always an

adequate solution to the problem. As the level of the received sound is

artificially raised in this way, the upper threshold of feeling is not neces-

sarily raised by a similar amount, with the result that pain may set in not

far above the threshold of audibility. This effect may seriously reduce the

ability to differentiate useful sounds from background noise. Other

related difficulties often complicate the problem.

9-29 Musical intervals. Scales. A full consideration of the subject

of musical scales and their effect upon the ear would take us well outside

the field of physical acoustics. However, since the acoustician is often

dealing with sound of a musical nature, he should have at least a speaking

acquaintance with the system of intervals used in western music.

The basic diatonic scale extends over a frequency range of two to one;

above and below such a range the pattern is repeated. Each total interval

is called an octave. Despite the fact that the frequency doubles with each
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successive octave, each interval of an octave seems, to the ear, to be a

frequency difference interval. This effect compares with the ear's roughly

logarithmic perception of intensity. Within the interval of one octave

the diatonic scale introduces smaller intervals according to the scheme of

Table 9-1. The numbers in the first row represent the frequency ratios

of each note to the lowest note, C, called the tonic. In the second row is

given the frequency ratio of two adjacent notes. From the latter it is seen

that the intervals within the range from the lower C to the C an octave

higher are also determined more on a frequency ratio basis than on a fre-

quency difference, the ratios varying between 9/8 and 16/15. The larger

ratios, 9/8 and 10/9, describe a whole tone interval; the smaller one, 16/15,

is a half-tone interval. Intervals smaller than this are rarely used in

western music. (The Arabs and the Persians divide their note cycle into

a larger number of intervals; quarter-tone intervals are frequently used,

one of the features of their music which makes it seem very strange to the

western ear.)

TABLE 9-1

Musical note C D E F G A B c

Frequency as related

to the tonic 1
9
8

5
4

4
3

3 5
3

15~8~ 2

Frequency ratio for

successive intervals 9.

8
1 16

1 5
9
8"

1
9

9
8

1 6
T5"

If music were always written using the same frequency for the tonic

(middle C actually has, on the modern piano, a frequency of 261.6 cycles-

sec
-1

, based on a standard A of 440 cycles-sec
-1

), the exact relationships

of the diatonic scale could always be maintained. If, however, it is desired

to choose a variety of notes as the tonic, difficulties develop. Table 9-2

shows the frequencies present if we choose to use the key of D instead of

the key of C, the intervals in each case being based on the diatonic scale.

(If we establish an A of 440 cycles, the diatonic scale requires C, the tonic,

to be 264 cycles.)

TABLE 9-2

Musical note C D E F G A B C' D'

Key of C 264 297 330 350 396 440 495 528

Key of D 297 *334 *371 396 *445 495 *557 594
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The four new notes marked with asterisks would have to be added for

the scale of D. If all possible musical keys were to be provided for,

seventy-two notes would be needed for each octave. To avoid this tremen-

dous complication, what is known as the equally tempered scale has been

devised (used by J. S. Bach and probably earlier musicians). In this

scheme there are 12 half-tone intervals in every range of an octave, adja-

cent notes a half-tone apart bearing the constant ratio of the twelfth root

of 2, i.e., 1.05946. Simple as this scheme is, it results in no one scale

corresponding to a given tonic being exactly like the diatonic. Since the

ratios of the diatonic scale were originally selected to suit the preferences

of the ear (being made up of three sets of major triads, each of which

constitutes a harmonious combination), this means that music which

makes use of the equally tempered scale is not quite so pleasant to the

ear. The difference, however, is apparently slight to any but the most
critical.

9-30 Consonance and dissonance. What constitutes a pleasant com-
bination of frequencies and what is an unpleasant combination has long

been a subject for discussion among both musicians and physicists. The
disagreeable sound of certain combinations was attributed by Helmholtz

to beat effects, either between the fundamental frequencies themselves or

between some of their harmonics. He believed that for the middle of the

audible spectrum the difference frequency or beat rate which produced

aural irritation covered the range of about 30 to 130 cycles-sec-1 . Two
adjacent half-tones in the neighborhood of 440 cycles-sec-1 differ by about

25 cycles and when sounded together are on the verge of being disagreeable

to the ear. Two adjacent whole tones in this region differ by about 45

cycles and the combination of two such notes is usually considered dis-

sonant. Even though the fundamental frequencies of two sounds with

rich harmonic structures are far enough apart to produce consonance,

there may be a particular harmonic of one tone which is close to a harmonic
of the other, and the result is an over-all effect of dissonance.

There is a strong individual subjective element in the matter of conso-

nance and dissonance that often determines the final impression. There
is also no doubt that musical fashions change. Much of the music written

in recent years is highly and continuously dissonant to ears accustomed
to Haydn and Mozart, yet adherents of this newer musical style welcome
each crashing " discord" with great satisfaction. Such sharp cleavages

in musical taste make it difficult to draw any very certain conclusions in

the matter of consonance and dissonance.



PROBLEMS 229

PROBLEMS

1. The lowest note within the range of

a bass voice has a fundamental frequency

of about 80 cycles-sec
-1

, (a) In view of

the dimensions of the vocal cavities, is it

likely that air resonance will occur for this

frequency? (b) Would the throat and

mouth, considered as a horn, constitute

an efficient radiating system for such a

frequency? (c) In view of the above

considerations, suggest an explanation of

the observed pitch, corresponding to a

frequency of 80 cycles-sec
-1

. (See Sec-

tion 9-22.)

2. Assume the existence of an ideal

electroacoustic transducer whose acoustic

radiation is proportional to the electrical

power delivered to it, at all possible audible

frequencies. Making use of the loudness

level contour (Fig. 9-8) corresponding to

40 db, (a) plot the power gain (ratio of

output to input power) vs the frequency/,

in db, for an amplifier designed to make
sounds of equal intensity appear equally

loud. Assume the gain in db at 1000

cycles-sec
-1 to be zero, (b) Assuming the

power output of the amplifier to be propor-

tional to the square of the output voltage,

plot the required voltage gain of the am-
plifier vs the frequency. Use as ordinates

the ratio of output voltage to input volt-

age, (c) Would the use of such an am-
plifier make the acoustic output sound

perfectly "natural"? Explain.

3. Compare the "dynamic range" of

the ear (useful range of sound intensities

in db) at 40, 1000, and 10,000 cycles-sec
-1

,

using Fig. 9-8.

4. The graph representing the har-

monic content of the vowel sound "oh"
(Fig. 9-lb), indicates that the most promi-

nent frequency present is 625 cycles-sec-1 .

On the basis of the discussion in Section

9-22, explain why, to both a singer and the

hearer, the characteristic frequency ap-

pears to be 125 cycles-sec
-1

.

5. Considering the ear mechanism as

a mechanical system, what is the probable

nature of its transient response (that is, its

response to an acoustic "pulse")?

6. In the "volley" theory of the hear-

ing sensation, would a variation in the

recovery time of an individual nerve fiber

seriously affect the ear's ability to perceive

the frequency property in a sound wave?

7. Consider the graphs of Figs. 9-8

and 9-9. If the sound pressure level rises

from 60 db to 80 db at a frequency of 100

cycles-sec
-1

, what will be the change in

loudness in millisones?

8. (a) For the average human ear,

what is the minimum perceptible change

in rms acoustic pressure (in dynes-cm-2)
if the frequency is 100 cycles-sec

-1 and if

the sound pressure level is 10 db? Make
use of the graphs of Fig. 9-10. (b) An-
swer the same question if the frequency

is 4000 cycles-sec
-1

, (c) What will be

the corresponding minimum perceptible

changes for (a) and (b) if the sound

pressure level is 40 db?

9. (a) Discuss the significance of the

graphs of Fig. 9-11 in connection with ac-

curately tuning a piano at very low and
at very high frequencies, (b) By how
much would a 100 cycle-sec

-1 note have

to be off tune at the several sound levels

shown to be detectable by the average ear?

Express your answer as a percentage and

as a frequency difference in cycles-sec
-1

.

10. Is the effect discussed in Section

9-20 and illustrated in the graphs of Fig.

9-12 likely to be of significance in (a)

speech, (b) the singing voice, (c) the music

from a symphonic orchestra, (d) the music

from a large pipe organ?

11. Assume that the ear is a nonlinear

mechanism and that the relationship be-

tween the driving force and the displace-

ment is F = £2. If the driving force is

F = (Fm)i COS 0)it + (Fmh COS Wit,

show that the response of the system, x,

will include both sum and difference fre-

quencies.



CHAPTER 10

SOUND MEASUREMENTS. EXPERIMENTAL ACOUSTICS

10-1 Precise acoustic measurement. The theoretical and mathemat-

ical aspects of modern acoustics are grounded in the thorough studies of the

physicists and mathematicians of the nineteenth century and earlier.

Articles published in recent years have helped to fill many gaps in the earlier

formulations, but almost all such contributions have been in the matter of

detail rather than of fundamental theory. It is in experimental acoustics

that striking progress has been made, largely because of the parallel devel-

opments in electrical equipment, particularly of the electronic variety.

Modern electronic measuring devices have almost entirely replaced the

earlier mechanical type. Their greatly increased sensitivity, ease of manip-

ulation, and general flexibility of design have contributed much to the

precision of acoustic measurements. It is now possible to test many of the

conclusions of the earlier theoreticians and, what is perhaps more important,

to test the performance of acoustic equipment when theoretical predictions

are lacking due to mathematical difficulties.

Because of the widespread use of electrical equipment in acoustic meas-

urement, we shall make frequent reference to specific circuits and electronic

laboratory equipment. When questions arise as to details of the circuits

and the equipment, one of the numerous books on circuitry and instrument

design should be consulted. In the experimental field, acoustics and

electronics are most intimately connected; a good understanding of elec-

tronic circuits is invaluable to laboratory work in acoustics.

10-2 Free-space measurements. Anechoic rooms. When fundamen-

tal data are required on the radiation properties of an acoustical device

such as a loudspeaker, measurements are usually taken under free-space

conditions, without the presence of complicating stationary wave patterns.

The simplest procedure is to take all the equipment outdoors, but even

there, reflections from the ground may introduce an important lack of

symmetry. Many such tests are made with both sound source and receiver

mounted high above the ground, on a tower. The use of directional

microphones (Section 10-9) will further help to discriminate against energy

reflected from the ground.

The advantages of an indoor method of free-space measurement are

obvious. The weather does not always cooperate with the scientist, for

one thing, and moreover the laboratory is a safer place to set up compli-

cated electrical equipment. Indoor free-space measurements require an
230
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III /Ir'itar

A modern anechoic room. (Courtesy Bell Telephone Laboratories)
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anechoic room. As the name implies, this is a chamber with completely

nonreflecting walls (walls that are complete absorbers). In addition to

complete elimination of stationary wave patterns it is necessary to thor-

oughly insulate the chamber against all disturbing sounds from the outside.

Until lately sound test rooms have fallen far short of meeting these stringent

requirements but recent study * has resulted in design data for a most

Fig. 10-1. Wedge structure on wall surfaces of anechoic chamber. {After Beranek
and Sleeper) Below, typical Fiberglas wedge.

efficient type of anechoic chamber. The wall structure is interesting and
will be described briefly.

The entire surface of all six walls of a room of rectangular shape is lined

with wedge-shaped units, the sharp edge of the wedge pointing directly into

the room. Figure 10-1 shows how the wedges look from the inside of the

room. The effective length of each wedge is from 4 to 5 feet and the direc-

tion of the sharp edges is alternately vertical and horizontal. Between
each wedge is a wedge-shaped air cavity. Any portion of a sound wave
entering these cavities at an angle will be reflected back and forth several

times. The wedges are constructed of Fiberglas, f a material of loose

* Beranek and Sleeper, Jour. Acous. Soc. Amer. 18, 140 (1946).

f A trade name.



10-4] STANDAKD SOUND SOURCES 233

'50 100 500 1000 2000

Frequency in cycles-sec" 1

Fig. 10-2. Reflection properties of wall

surface like that of Fig. 10-1.

structure and with such highly absorbent properties that there is great

attenuation of the wave with each reflection. In addition, there will be

losses due to increased viscous effects towards the small end of the air

wedge. It is usual to suspend a tightly stretched steel net near the center

of the chamber in lieu of a floor; upon this net the observer may set up the

acoustic equipment.

A graph showing the reflecting power of this type of wall surface is given

in Fig. 10-2. The ordinates represent the ratio, in percent, of the acoustic

pressure in the reflected wave to

the acoustic pressure in the inci-

dent wave, at the wall. Since for

plane waves the intensity is pro-

portional to the square of the pres-

sure, the ratio of the corresponding

intensities, in percent, will in each

case be the square of the ordinate.

From a frequency of 1500 cycles

down to about 90 cycles, the pres-

sure ratio is less than 5%. The

intensity ratio is therefore less than 0.25%. In terms of absorption, this

means that 99.75% of the incident energy is absorbed. This is very close

to the conditions in free space. In an anechoic chamber 38 X 50 X 38

feet, the inverse square law characteristic of free space was found to hold

to within a variation of 0.5 db in pressure level for distances up to 20 feet

from a small source and for any frequency above 65 cycles-sec
-1

. At 50

cycles-sec
-1 the absorption is less effective, as the graph of Fig. 10-2 indi-

cates, but even there the deviations from the inverse square law amount to

only 3 or 4 db.

10-3 Reverberant chambers. In many problems related to the prac-

tical reproduction of speech and music it is desirable to take measurements

in rooms having partially reflecting walls of the ordinary type. Since

every room is different in size, shape, and the reflecting properties of its

wall surfaces, all reported measurements should, to have any physical sig-

nificance, be accompanied by a full description of the room and of the

location of the acoustical apparatus. We shall return to this discussion

in the next chapter, in connection with the indoor performance of loud-

speakers.

10-4 Standard sound sources. The thermophone. Two procedures

for the calibration of microphones are in common use. One is a free-space
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method, the other limits the location of the microphone and the source to

the confines of a small cavity. In the latter method it is sometimes con-

venient to have a source which will produce a known acoustic pressure.

Several such sources whose behavior can be predicted with some degree of

precision have been developed.

The thermophone, in its modern form, is due to Arnold and Crandall,*

although experiments were conducted as far back as 1898 by F. Braun.

As its name suggests, the thermophone makes use of a strip of foil or a fine

wire, heated by passing through it superimposed alternating and direct

current. The periodic fluctuations in the temperature of the foil or wire

produce a heat diffusion wave in the gas in the immediate neighborhood of

the conductor. This diffusion wave gives rise to an acoustic wave that

propagates away from the heated surface. The purpose of the d.c. bias is

to ensure in the acoustic wave a frequency which is the same as that of the

alternating heating current. Without such a steady current the frequency

would be doubled.

The thermophone is generally used within a cavity whose dimensions

are small compared with the wavelength of the sound wave. Under these

conditions the acoustic pressure within such a volume is fundamentally

dependent upon the temperature fluctuation at the surface of the heated

conductor, which in turn is a function of the values of the d.c. and a.c.

components of the currents. The main body of the cavity, including the

walls and the gas within the cavity (up to within a few mm of the heated

surface), may be considered to remain at constant temperature. An
expression can be derived for the acoustic pressure within the cavity. In

the case of the heated foil, this pressure is a quantitative function of the

currents used, the frequency of the alternating component, the physical

properties of the gas used, and the mean temperatures of the foil and of

the surrounding gas in the cavity, f In view of the rather complicated

form of this equation it is rather surprising that the pressure value which

it yields agrees so well with experiment. The pressure in the cavity may
be experimentally determined by using the reciprocity principle (Sec-

tion 10-13) . Agreement with the theoretical behavior of the thermophone

is to within less than 1.0 db, considered a small error in acoustical measure-

ments.

10-5 The pistonphone. It is possible to construct a true acoustic piston

which will behave in a manner similar to that of the ideal piston mentioned

* Arnold and Crandall, Phys. Rev. 10, 22-38 (1917).

t See Beranek, Acoustic Measurements, pp. 165-168.
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so frequently in this book. One such design is illustrated in Fig. 10-3.*

The piston, driven sinusoidally in the manner of a loudspeaker unit, pro-

jects into a small cavity in which is mounted the microphone or other

device to be tested. If the dimensions of the cavity are small compared

with the wavelength, the excess pressure p within the cavity at any one

instant may be simply computed on

the basis of the elasticity of the en-

closed gas

:

xSp@>

Piston
Driving coil

Microphone

V (10-1)

Close

chamber

Fig. 10-3.

Viewing

microscope

The pistonphone.

(If the rms displacement is used, the

Slotted
actuator
plate

where Sp is the area of the piston

face, V is the mean volume within

the cavity, (B is the adiabatic elastic

bulk modulus of the gas for the

mean pressure being used, and x is

the displacement of the piston.

pressure will be the rms value.) The amplitude of motion of the piston

may be observed directly with a microscope, as shown in the figure.

Equation (10-1), in practice, must be corrected for heat conduction at

the walls. The pistonphone may be used only at low frequencies, pri-

marily because of limitations associated

with the inertia of the piston and also

because of the requirements regarding

cavity dimensions.

10-6 The electrostatic actuator. At

high frequencies both the thermophone

and the pistonphone are inadequate be-

cause of the presence of phase differences

within the cavity. Under these condi-

tions a microphone may be calibrated with

an electrostatic actuator. Strictly speak-

ing, the "actuator" is not a source of

acoustical waves at all, but a calibrated

mechanism whereby direct forces may be applied to a diaphragm like

that of the microphone. Since the standard sound sources, the thermo-

phone and the pistonphone, are of primary utility in the calibration of

sound receivers, we shall briefly describe the electrostatic actuator at this

point.

Microphone

diaphragm

Fig. 10-4.

tuator.

The electrostatic ac-

* After Glover and Baumzweiger, Jour. Acous. Soc. of Amer. 10, 200-202 (1939)
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As shown in Fig. 10-4, a thick metallic plate having a number of slots

constitutes one plate of a capacitor, the other plate being the diaphragm
of the microphone to be calibrated. If a sinusoidal variation in potential
is applied between the two plates of the capacitor, along with a biasing d.c.

potential (the bias being used for the same reason as in the case of the
thermophone) the electrostatic force per unit area of the diaphragm will be

Pima —
8.85 EQ Er

d2
10-7 dyne-cnr (10-2)

Normal

where E is the bias voltage, ETms is the rms value of the alternating com-
ponent, and d is the effective spacing between the plates, corrected for the
presence of the slots. This equation neglects the effect of the air loading,

which the presence of the slots in the fixed plate is designed to minimize.
This method of microphone calibration is particularly convenient, since
the value of p does not in any way depend on the conditions within a gas.

The actuator may be used well into the ultrasonic frequency region.

10-7 Measurements in a field of sound. The Rayleigh disk. At the
receiving end, there are a few detectors of sound waves whose exact re-

sponse to a particular intensity or pres-

sure level can be predicted with good
accuracy. Among such absolute sound
measurement devices is the Rayleigh
disk, suggested by Lord Rayleigh in 1882.

In Fig. 10-5 are shown the flow lines

around a thin flat rigid disk set at an
angle to the general direction of motion
of a fluid. It will be noted that there

are two symmetrical points, a and b,

which represent regions where the com-
ponent flow parallel to the plane of the disk changes direction. At these
points the fluid (gas or liquid) is relatively stagnant. Opposite each point,

on the other side of the disk, is a region where the flow is relatively rapid.

According to the theorem of Bernoulli, there will be a difference in pressure
on the two sides of the disk in the neighborhood of points a and b, the
sense of the net forces being such that a torque on the disk results. For
the situation as shown, the torque is that of a couple in the clockwise
direction. If the direction of motion of the fluid is reversed, the flow
lines remain unchanged in shape. If such a disk is exposed to an advancing
longitudinal wave there should be a net average torque, despite the rever-

sals in the direction of motion of the air particles.

Fig. 10-5.

Rayleigh disk

lines around
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For the steady stream velocity of an incompressible fluid around a thin

rigid circular disk (strictly, a thin ellipsoid), the torque L can be shown to be

L =
-f P0r*u

2 sin 20, (10-3)

where p is the fluid density, r the radius of the disk, u the stream velocity,

and 6 the angle between the normal drawn to the plane of the disk and the

direction of motion of the undisturbed stream. For the periodic motions

associated with a sound wave the average torque will be determined by

the average squared velocity. It should then be correct to use for u the

rms particle velocity in the wave, £rms-

From the form of Eq. (10-3), the torque is zero if the disk is placed

either parallel or perpendicular to the direction of the stream velocity.

(The latter position is actually that of stable equilibrium.) Because the

torque is a maximum when = 45°, the disk is suspended by an elastic

fiber with the plane of the disk making a 45° angle with the direction of

propagation of the wave. A torsion head adjustment may be used to

maintain the disk in this position in the presence of the torque due to the

sound wave. Knowing the elastic constant of the fiber, the value of |

may be computed by use of Eq. (10-3).

In actual practice a much more complicated equation than (10-3)

must be used.* Small second order displacements of the disk arise because

of lack of complete rigidity in the suspension and, since the size of the disk

is always finite in relation to the wavelength, diffraction effects must be

taken into account. (The radius of the disk must in any case be fairly

small compared with the wavelength X if the velocity £ is to be assumed

uniform in the immediate vicinity of the disk.) If the radius of the disk

is sufficiently small compared with X, a slight modification in form of the

steady flow equation (10-3) may be taken as an accurate expression for

the average torque, Lav :

L^i^(UY^2e(^) do-4)

In this equation, mi is the mass of the disk and ra is its so-called ''hydro-

dynamical mass," equal to fp r3
. (This is the same quantity that enters

into the index of refraction of an acoustic lens of the obstacle type, dis-

cussed in Section 6-7.) Equation (10-4) may be used either for a pro-

gressive sound wave or at a position of a velocity antinode in a stationary

wave pattern.

* See Beranek, Acoustic Measurements, pp. 149-152.
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Unfortunately, the Rayleigh disk may be used for precision measure-

ments only in regions where particle velocities are high. If used without

a resonator, the pressure level must be at least 50 db in air and 85 db in

water. By the use of a tuned resonator, sensitivities comparable to that

of the ear may be reached, but in this case the disk ceases to be a directly

calibrated precision measuring instrument. With a resonator, however,

the Rayleigh disk was a convenient comparison detector before the advent

of electrical microphones.

10-8 Other absolute detection methods. Indirect observation of the

amplitudes of motion of air molecules in the presence of a sound wave is

possible if the region is filled with finely divided smoke particles. After

careful microscopic measurement of the path lengths of the smoke particles

(whose motion was the result of the vibration of the much smaller air

molecules), Andrade and Parker * concluded that the amplitude of the

smoke particles and the amplitude of the air particles were nearly identical

(within 2%) up to a frequency of 5000 cycles-sec
-1

. This method of

measurement of the particle displacement £ in a wave is hardly a practical

technique for routine acoustical measurements.

The existence of the phenomenon of radiation pressure is the basis of

another "absolute" measurement technique. In acoustic waves such

pressure is the result of second-order variations in the pressure in front of

the surface upon which the wave impinges. It will be recalled that for

small amplitude waves we may assume that the relation between P and V
is a linear one. Actually, the graph is hyperbolic, not a straight line.

Therefore if we consider the situation in front of a rigid reflecting surface,

as the particle layers surge towards and away from the boundary, we must
recognize that the increases in pressure above the undisturbed value are

slightly greater than the decreases. The time average of the acoustic

pressure is then not zero, but a small positive value.

An interesting simple treatment of acoustic radiation pressure, due to

Larmor,f is worth consideration. Assume that a steady train of incident

waves in which the energy density is e» impinges normally upon a rigid,

stationary, perfectly reflecting wall. The average energy density in the

reflected wave will be the same as in the incident wave, so that the total

energy density in front of the wall, etotai, will be 2e». Now imagine the

wall to be slowly advancing to meet the waves with a steady velocity, u.

In one second the wall will intercept a column of length c + u, where c is

* Andrade and Parker, Proc. Roy. Soc. London A159, 507-526 (1937).

f Larmor, Enc. Brit, 11th ed. 22, 786 (1911).
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the wave velocity. This energy will be returned to the medium, but it

will occupy a column of reduced length, that is, the length will be c - u.

Hence the energy density er in the reflected wave will be greater than that

in the incident wave according to the ratio

e, = c_± u = x
_2u_

(10_5)
e% c — u c — u

The increase in the total energy density in the region, if u is much less

than c, will be

*_«-*(l+^)-*-^ (10-6)

In a region in the form of a column in front of the wall, of length c and of

unit cross section, the total increase in energy will be c(er — e») = 2ue { .

The work done by the force necessary to move the wall must account for

this energy. The force on the end of a column of unit cross section may be

called a pressure, P. lining the wall velocity, u, we may therefore equate

the work performed per second to the energy increase in the medium per

second

:

Pu = 2ue{.

Since the wall velocity u cancels out, the result does not depend on its

value, which we may imagine to be vanishingly small. Under these con-

ditions, 2e* is the total energy density in front of the wall, so that

P = etotai, (10-7)

an astonishingly simple result.

A more rigorous derivation of the pressure due to impinging radiation

shows Eq. (10-7) to be correct also in cases of imperfect reflection. In the

special case of a perfectly absorbing wall, the incident wave only is involved,

so that the value of etotai is just one-half what it is for a perfectly reflecting

wall. The radiation pressure is hence also one-half as great.

The existence of radiation pressure is more interesting than useful for

purposes of sound measurement. Rarely, even in the case of very high

intensity sounds, does the energy density exceed the value of one erg-cm-3 .

According to Eq. (10-7) the corresponding range of radiation pressure is

from one to two dynes-cm-2 , depending on the absorption coefficient of

the surface. Sounds of average intensity would result in much lower

pressures, possibly as low as 10-13 dyne-cm-2 near the threshold of audi-

bility. In the field of ultrasonics the effect is more useful, since waves of

high intensity are commonly encountered both in air and in water.

10-9 Detectors requiring calibration. Microphones. By far the most

useful type of acoustical detector is some form of electrical microphone in
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combination with an electronic amplifier. Such systems yield an electrical

response that varies with the pressure in the wave and in most cases with
the frequency also. Their absolute sensitivity calibration may sometimes
be estimated, but it is almost universal practice either to compare their

response with that of some absolute laboratory standard, such as the
Rayleigh disk, or else to deduce their calibration from measurements
based on the reciprocity principle, as will be discussed presently. Un-
like the detectors previously mentioned, a good microphone and amplifier

system will approach the sensitivity of the human ear. Such an arrange-

ment is rugged and easy to adjust, in contrast to many of the earlier

devices.

Microphones in general may be classified as either sensitive to acoustic

pressure or to pressure gradient. (The latter are often called velocity micro-

phones.) Microphones of all types almost universally have some sort of

diaphragm exposed to the wave. The resulting motion of this diaphragm
actuates the mechanism peculiar to the particular type of microphone.
If one side only of the diaphragm is exposed, it is called a pressure micro-

phone. Such a microphone is relatively insensitive to the direction from
which the wave is coming, since the force on a surface in a fluid under
pressure is independent of the orientation of the surface. Strictly speaking,

it is the pressure aspect in the wave that actuates practically all micro-
phones. However, if both sides of the diaphragm are exposed, the net
effective force per unit area will be the difference between the pressures on
the two sides. For a diaphragm of given thickness, the pressure difference

will be small but it will be a definite function of the intensity and of the
frequency and will actuate the diaphragm accordingly. If the diaphragm
is mounted parallel to the wave front, the pressure difference will be a max-
imum. If the plane of the diaphragm lies perpendicular to the wave front,

the pressure difference will be zero. For this reason, such a pressure gra-

dient microphone will be directional, often a very useful practical prop-
erty. For a given diaphragm, it is the pressure gradient (or pressure

change per unit distance in space) that determines the microphone response,

hence the name. Since the particle velocity £ is also a vector quantity in

the same direction as the pressure gradient, the name velocity microphone
is also appropriate. (The response to pressure gradient and to velocity is

somewhat different, however, as we shall see presently.)

10-10 Microphones. A thorough discussion of the design features of

all the numerous types of microphones would occupy more space than is

allowable in a book of this size. We shall have to be content with a brief

description of a few of the more important kinds.
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1, The carbon microphone. About the only remaining example of this

early variety of microphone is the telephone transmitter, familiar in the

home and also still used in certain

Diaphragm

Bag containing

carbon granules

Impedance
matching—y
transformer/

Battery

Fig. 10-6. Essential parts and circuit

for modern military carbon microphone.

military applications where circuit

simplicity and mechanical rugged-

ness are important requirements.

The active element in the micro-

phone is a loosely confined collection

of carbon granules, in contact with

which is an electrode attached to the

actuating diaphragm. A simplified

diagram of the mechanism and the

essential associated circuit is given

in Fig. 10-6. The vibration of the

diaphragm varies the resistance of

the collection of carbon granules, and

this variation modulates the current in an electrical circuit. It will be

noted that a d.c. source of potential is required. The battery supplying

this potential is the source of power in the circuit, the sound vibrations

merely serving as the triggering agent. Assuming that for small displace-

ments the variation in the resistance of the microphone is proportional to

the displacement of the diaphragm, the current in the circuit due to a sinu-

soidal acoustic pressure can be

shown to constitute a harmonic

series, with the lowest frequency

corresponding to that in the wave.

The presence of the higher fre-

quency terms is not too detrimental

for purposes of speech. The size

and stiffness of the diaphragm (the

latter is a " plate," not a "mem-
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Fig. 10-7. Typical response character-

istic of carbon microphone.

brane") are such as to cause it to have its main resonance at about the

middle of the important range of frequencies for speech (about 2000 cycles-

sec
-1

). The type of response to be expected at a constant pressure level

is shown in Fig. 10-7.

A double-button carbon microphone makes use of two carbon packs, one

on each side of the diaphragm. As the diaphragm moves, the resistance

of one pack increases, while that of the other decreases. The microphone

is connected into a push-pull type of circuit, very similar to the electronic

amplifier circuit of the push-pull variety. As in the case of the latter cir-

cuit, the even harmonics generated by the microphone cancel out (see any
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book on electronic amplifiers). Improved forms of the two-button carbon

microphone compare well in uniformity of frequency response with the

best microphones of other types. The chief drawbacks of all carbon

microphones are the presence of background noise of the hiss type and the

fact that the calibration of a carbon microphone may not be relied upon

for any considerable length of time.

2. The capacitor microphone. The capacitor microphone is one of the

earliest precision acoustical instruments. The diaphragm is a stretched

thin metallic membrane which forms

one plate of an air dielectric capacitor,

-Microphone
Thin

stretched

diaphragm
Back plate

grooved for

damping

Fig.

phone.

10-8. The capacitor micro- Fig. 10-9. Essential circuit for a capaci-

tor microphone.

the other plate being relatively thick and rigid (Fig. 10-8) . With waves of

small amplitude, the capacity C may be made to vary sinusoidally accord-

ing to the equation
C = Co + (Cm)s cos ut, (10-8)

where Co is the quiescent capacity and (Cm) s is the maximum value of the

increment of capacity due to the effect of a particular impinging wave.

The microphone is connected in series with a resistor and a polarizing d.c.

potential, as indicated in Fig. 10-9. The current i in the microphone-

resistor loop is determined by the differential equation

ri + i ii dt = E, (10-9)

where E and r are the values of the d.c. potential and the series resistor,

respectively, and C is the instantaneous value of the capacity in the pres-

ence of the wave. If C from Eq. (10-8) is introduced into Eq. (10-9),

the solution for small amplitude diaphragm motions for the steady state

a.c. component zac yields,

Eo(Cm)i

Co VV+I[1/coCo)
5

COS (ut + a). (10-10)
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The microphone is thus seen to supply an open circuit emf of

e = Hq—^— COS cot. (10-11)

— ~° co c 6

,/\^ \

\

\

\

fa)
\

10,000 20,000

1Frequency in cycles-sec

Fig. 10-10. Typical response charac

teristic of a capacitor microphone.

For small amplitude motions, e will be proportional to the diaphragm

amplitude xm, since the capacitance (Cm) s will be nearly linear with xm .

According to Eq. (1-33), the amplitude xm of a particle (in this case an

" effective" particle) executing forced vibrations will be proportional to

1/ojZ, where Z is the mechanical impedance of the particle system. If the

microphone diaphragm is stretched

so that its fundamental resonance

is at the upper end of the audible

spectrum, at lower frequencies it will

offer to the sound wave an imped-

ance Z which is largely reactive and

of the capacitive type, of the form

K/o). Therefore with an acoustic

pressure of constant peak value the

amplitude of motion will be constant,

quite independent of frequency. A typical response curve for a capacitor

microphone is shown in Fig. 10-10. The resonance peak near 8000 cycles-

sec
-1

is clearly in evidence.

The chief drawback to the use of the capacitor microphone in applied

acoustics is the high electrical internal impedance of a capacitive nature.

This necessitates placing an electronic amplifier very close to the micro-

phone, since with long lines of high distributed capacitance, the electrical

output will otherwise be very low. The necessity for a relatively high

polarizing potential is also a detriment. In spite of these disadvantages,

the capacitor microphone is widely used for precise acoustical measure-

ments. The response is uniform, the calibration may be relied upon, and

in view of the small physical size of some of the recent designs, diffraction

difficulties can be held to a minimum.

3. Electrodynamic microphones. Microphones of the electrodynamic

type are rugged and may be designed to have a wide frequency response.

Two general varieties are in use, the moving coil and the ribbon type.

The electrical output in both cases is the result of the motion of a conductor

in a magnetic field, the conductor being in the first type a helical coil and

in the other a flat metallic ribbon or strip (Fig. 10-11). Since the potential

developed is due to electromagnetic induction, it is, in either case, propor-

tional to the velocity of the conductor.

For the velocity of the moving system to be independent of frequency,

assuming constant sound pressure, the mechanical impedance must also
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be independent of frequency. This means, according to Eq. (1-34), that

Z must be primarily resistive, rather than reactive. The usual design

achieves this end by heavily loading the diaphragm with an acoustic net-

work in the body of the microphone. The important resistive element is

often supplied by a porous silk membrane placed close to the rear of the

diaphragm. As a result, the motion of the latter is more than critically

Pole

pieces

Diaphragm

Permanent
magnet
structure

Driving coil

Ribbon
diaphragm

Permanent
magnet

(a) (b)

Fig. 10-11. (a) Moving coil electrodynamic microphone, (b) Ribbon microphone.

damped and the response can be designed to be practically free of peaks

and valleys.

Both the moving coil and ribbon types of microphone have relatively

low internal impedance (that of the ribbon type is lower). The use of

long lines is perfectly feasible with the use of impedance shifting trans-

formers at the microphone. No polarizing potential is necessary, of

course.

The ribbon type of construction is especially adapted to a microphone

of the pressure gradient type. All that is necessary is to expose both sides

of the ribbon to the wave; since the ribbon is narrow, the phase of the

acoustic pressure is virtually constant across its width. In this microphone

the moving diaphragm (the ribbon) is also the electrical conductor, the

induced potential appearing across its ends.

Inspection of Eq. (2-19e) shows that for plane waves having constant

maximum pressure (pm), the pressure gradient (dp/dx) will be proportional

to 1/X or to the frequency/. If the ribbon is designed to have a mechanical

impedance which is essentially a mass reactance (X = com), its velocity
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response x to the actuating force associated with the pressure gradient will

be independent of frequency. Therefore, for a fixed microphone orienta-

tion, its electrical output (oc ±) will be a direct measure of either the

sound pressure or of the particle velocity in the wave, since for plane

waves these two qualities are proportional to each other. To give to the

ribbon a mechanical reactance of the mass type, the resonance frequency is

adjusted to be at the lower end of the audible spectrum.

Many practical microphones of the ribbon type may be converted so as

to act as nondirectional pressure detectors. To accomplish this, a simple

mechanical arrangement is provided whereby the wave is denied access

to the back of the ribbon.

4. Crystal microphones. Many nonmetallic crystals become electrically

polarized with deformation of the crystal shape and a variety of micro-

phone designs are based on this piezoelectric effect. If metal foil is

cemented to certain surfaces, the potentials developed can be applied to

the input circuits of an electronic amplifier, as

in the case of other electrical, microphones.

The type of deformation and its relation to the

direction of the crystal axes and planes deter-

mine the magnitude of the resulting potential.

Deformations of the bending, shear, and com-

pression type have been utilized, the change of

shape being brought about by means of link-

ages arranged between the crystal and a dia-

phragm exposed to the sound wave.* Such a

diaphragm type of crystal microphone is shown

in section in Fig. 10-12.

The alternating voltage appearing on the

foil cemented to the crystal surfaces, when the

deformation is periodic in nature, is propor-

tional (for small deformations) to the amplitude

of the deformation. Hence, as for microphones of the capacitor type and

for the same reasons, it is desirable to arrange the over-all fundamental

mechanical resonance of the system to be at some high audible frequency.

This can readily be done.

In order to eliminate the undesirable resonances peculiar to a diaphragm,

a directly actuated crystal microphone may be constructed. In this case

the sound waves impinge directly on the crystal surfaces. The output

Diaphragm

Crystal torque actuated

Fig. 10-12. Crystal micro-

phone of the diaphragm type.

*See Olson, Elements of Acoustical Engineering, p. 181, D. Van Nostrand Co.

(1940).
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voltage of this microphone is usually much smaller than for one actuated

by a diaphragm.

The potentials developed at the terminals of a crystal microphone,

especially of the diaphragm type, are considerably greater than for many

electrodynamic microphones and hence less amplification is required. The

most commonly used crystal, Rochelle salt, is a hydrate, and the crystal

must be carefully housed to prevent dehydration. In addition, tempera-

tures above 115°F will permanently injure the crystal. Nevertheless, by

proper design, the crystal microphone can be made into a rugged precision

instrument, especially if some of the newer, more stable crystals are used.

One such laboratory tool reveals an absolutely flat frequency characteristic

(for constant sound pressure) from 20 to 20,000 cycles-sec
-1

.

10-11 Relative sensitivities of different types of microphones. It is

interesting to compare the sensitivities of the three principal types of

microphone just described. For this purpose it has become common to

specify the electrical response of a microphone to a free-field rms acoustic

pressure of 1 dyne-cm-2 . With acoustic pressures of this magnitude, the

output voltage of any microphone is very small, being of the order of 10-3

or 10-4 volt. It is convenient to use the decibel scale to specify this voltage

sensitivity. The output voltage E, compared with 1.0 volt, using the above

standard acoustic pressure, may be expressed in decibels as

E
Output voltage in db = 20 logio rr-fi'

On this basis the appproximate output of the three principal types of

microphone may be stated.

Type of microphone
Approximate output voltage in db above

1 volt, for a pressure of 1 dyne-cm'2

Capacitor

Electrodynamic (after output impedance is

brought to 500 ohms with a transformer)

Crystal (diaphragm type)

-50 db

-80 db
-55 db

10-12 The calibration of microphones. For many purposes in the

laboratory a microphone is simply a comparison device, used, for instance,

to compare the acoustic pressure at one point in space with that at another.

For such uses, especially if one frequency only is to be used, no absolute

calibration is necessary. There are many problems, however, in which

it is necessary to know the acoustic pressure corresponding to a given
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voltage appearing at the output of the amplifier. The so-called "gain"

(ratio of output to input voltage) of an electronic amplifier is readily de-

termined. But the exact relation between the potential delivered by
the particular microphone used to the acoustic pressure at the diaphragm

or, perhaps more important, to the acoustic pressure at the point before the

introduction of the microphone, is quite another matter. For certain

simple geometry, such as that of the ribbon microphone, the pressure-

output voltage relationship may be computed with fair accuracy. In any

case, careful experimental calibration is called for.

For many years the calculated response of the Rayleigh disk was the

standard of comparison for free-field measurements. As has been pointed

out, the Rayleigh disk is not a sensitive detector, and in recent years it has

been observed that it is subject to many errors of a second-order variety.

Consequently, ever since the published work of Dubois * and of MacLean f

on the "reciprocity method" of calibration, this newer technique has been

widely used, instead of comparison with a primary standard. We shall

describe this method briefly.

Generator

Passive
network

(a)
Ammeter-

Ammeter

10-13 The reciprocity method for calibrating microphones. The prin-

ciple of reciprocity, well established in electrical circuit theory, is basic to

the calibration technique bearing the

same name. It may be shown that for

any passive four-terminal network, no

change of observed current will take

place if the generator and ammeter,

shown in Fig. 10-13a, are interchanged

as indicated in Fig. 10-13b. To test

this principle, a circuit which can be "re-

versed" in this sense is necessary (any

ordinary circuit will have this property)

.

It is possible to construct many kinds of

sound sources or sound detectors that

possess electroacoustic reversibility, i.e.,

the same device can be used with equal

facility as a source of sound or as a re-

ceiver. We call such a device a reversible transducer, a transducer being any

agent capable of receiving power from one system and transferring it to a

different system.
,

Fig.

ciple.

10-13.

Generator-

(b)

The reciprocity prin-

* Dubois, Revue d'acoustique 2, 253-287 (1932).

f MacLean, Jour. Acous. Soc. of Amer. 12, 140-146 (1940).
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As we have seen, it is possible to write the electrical analogs of many of

the quantities important in acoustical and mechanical phenomena. Simi-

larly, analogous " circuit" equations may be written for the behavior of

acoustical and mechanical systems. When a system is part acoustical,

part mechanical, and part electrical, unifying equations for the whole may

also be written, although we have given no example of this procedure. It

is therefore possible to represent a reversible transducer as coupled or

" connected" to the surrounding medium and acting either as a generator,

delivering power to the medium when acting as a detector, or as an imped-

ance to which power is being delivered.

The following experimental technique is based on the above point of

view. To calibrate a microphone it is necessary to have also a small

reversible transducer and a small source of virtually spherical waves.

Measurements are made in free space or in an anechoic chamber. The

microphone Tx and the transducer Tr (used as a detector) are placed suc-

cessively at the same distance d from the source T. The ratio of the two

open-circuit voltages, Ex/Er , is noted. Then Tr is driven with a constant

known alternating current Ir , Tx is placed the same distance d from Tr,
and

the open circuit voltage E'x is noted. Data sufficient for the calibration of

the microphone have now been obtained. The circuit representing the

transducer and its coupling to the medium (the free field) is drawn and its

equation set up.* The final expression for the calibration constant Mx,

representing the ratio of the open circuit voltage at the microphone to the

sound pressure present before the microphone was introduced, is

Mx =Jf^flr)— X10- 7 volt-dyne-i-cm2
. (10-12)

(It is also possible to compute the calibration constant of the transducer.)

It should be noted that no previous calibration of either T or Tr is

implied or necessary. While there are some restrictions on the method as

to frequency (the frequency may not be too high), the technique is remark-

ably straightforward. The distance d is in some doubt largely because of

the finite size of the transducer. The errors in calibration, however, are

in general small, and the computations take account of diffraction effects,

always present in free-space measurements.

The reciprocity technique may be extended to the "closed chamber"

type of calibration mentioned earlier in this chapter in connection with the

thermophone and the pistonphone. As in free space applications, no

primary standard source of pressure is required for the use of the reciprocity

* See Beranek, Acoustic Measurements, pp. 116-122, for details of this analysis.
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principle. The closed chamber calibration of a microphone must always

be corrected if the instrument is to be used for free-space measurements,

since diffraction effects then enter to alter the pressure pattern.

10-14 Measurement of frequency in a wave. The frequency of a pure

sinusoidal wave may be measured indirectly by determination of the

wavelength X and the propagation velocity c, using the relation / = c/X.

The wave velocity in air can be determined, as described in Chapter 6,

by the use of any convenient source of known frequency. Knowing the

velocity c, the wavelength X in the disturbance can be measured by setting

up a stationary wave pattern in front of a reflecting surface. The wave-

length will be twice the distance between nodes (the latter points having

been located with a microphone of small dimensions).

The frequency in the wave may be compared directly with that of a

calibrated laboratory oscillator of the fixed frequency type or, more con-

veniently, one whose frequency is continuously variable. Fixed primary

standards may be of two general types. The older form consists of a tem-

perature-controlled tuning fork gently driven by means of electrical feed-

back circuits; a very pure sinusoidal voltage may be extracted from the

motion of the prongs by induction. By the use of special alloys, the varia-

tion of fork frequency with temperature can be minimized. If the tem-

perature is controlled to within 0.1°C, the frequency can be maintained

constant to within one part in 100,000.

A frequency standard of somewhat higher precision makes use of an

electronic oscillator whose frequency is controlled by the use of a quartz

crystal. Such crystals are cut to resonate in the neighborhood of 50 to

100 kc, a frequency which is, of course, far above the audible range. Pre-

cise lower frequencies within the audible band may be obtained by means

of " frequency dividing" circuits coupled to the oscillator. The latter are

essentially multivibrator circuits, which themselves generate oscillations

of the relaxation type, very rich in harmonics which are all multiples of

the fundamental. If the master crystal-controlled oscillator has a fre-

quency near that of one of the harmonics generated by the multivibrator,

the latter will "lock in" with the master oscillator and so will the complete

harmonic series. In this way frequencies lower than that of the master

oscillator will partake of a similar high precision. Constancy to within one

part in 107 may be attained.

Generators of alternating voltages of continuously variable frequency

are often used in acoustic measurement. Such generators are considered

to be secondary standards whose calibration must be checked with primary

standards of the kind just described. Their frequencies may rarely be
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assumed known to within 1%. Two general types of electronic circuits are

used, that of the beat frequency oscillator and that of the R-C oscillator.

The first employs two radio frequency oscillators whose outputs are

coupled into a common circuit. If the separate frequencies are adjusted

to differ by a small amount, the beat variation can be rectified and a

difference frequency extracted. By varying the frequency of one of the

oscillators a variable audio frequency can be obtained. The R-C oscillator

is small, compact, and easy to adjust, although somewhat less stable than

the beat frequency oscillator (at least at the higher frequencies). This

interesting circuit employs no inductances, but instead utilizes the resonant

properties of a resistive-capacitive network, together with electronic feed-

back circuits. It is particularly useful at very low frequencies, since it

can be made to operate with good wave form at frequencies of less than

1 cycle-sec
-1

.

For comparing an unknown frequency with any laboratory standard,

the most convenient instrument is the oscilloscope. The voltage output

of the standard frequency generator is applied to one pair of deflecting

plates while the amplified voltage from a microphone located in the sound

field is applied to the other pair of plates. As explained in Chapter 1, the

spot due to the electron beam will then execute Lissajous' figures. The
interpretation of these figures furnishes a ready means of frequency identi-

fication. The simplest procedure, if the standard frequency source is con-

tinuously variable, is to turn the dial of the instrument until the pattern

on the screen becomes a steady circle, ellipse, or straight line. The two

frequencies are then the same, and the unknown frequency is simply read

from the calibrated dial of the standard frequency generator.

Other types of instruments occasionally used for frequency comparison

will not be described here, since the oscilloscope method is almost univer-

sally preferred.

10-15 Complex wave analysis. Sounds rarely consist of a single iso-

lated frequency. Steady state sounds from a musical instrument, however,

may consist of a fairly small number of distinct frequencies with no energy

in the intervening frequency regions, and this type of complex sound can

be broken down into an equivalent Fourier series. To determine the par-

ticular members of the series that are present, all that is required is an

oscillographic record of the wave shape. This record can be analyzed by
graphical methods or in one of the many mechanical or electronic analyzers

referred to in Chapter 1. The precision and detail of this analysis depend

upon the patience of the computer in the one case and upon the complexity

and precision of the instrument in the other.
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A convenient and rapid analyzing instrument for determining the

individual frequencies and their amplitudes is the heterodyne type of

analyzer, a simplified functional diagram of which is shown in Fig. 10-14.

The output from a variable frequency oscillator (tuned to a frequency in

the neighborhood of 50 kc) is combined with the signal voltage and the

sum frequency is sent through a narrow band electrical filter. The latter

may be designed for a band width of only a few cycles-sec"1
. To the out-

put of the filter is connected an amplifier and a recording meter. A signal

Mixer

circuit

Signal from

microphone
*

i

,

f$\

Narrow

band
filter

Amplifier
To
meter

Variable

frequency

oscillator

Fig. 10-14. Functional diagram of the heterodyne type of complex wave analyzer.

will reach the meter only when the frequency of the local oscillator, plus

that present in the acoustic wave, lies within the narrow pass band. The

setting of the local oscillator will obviously differ for every such frequency

component in the wave, and consequently the dial can be calibrated in

terms of the acoustic input frequency. The operation of the circuit is

very similar in principle to the heterodyne circuit used in practically all

modern radio receivers. The final recording in the analyzer may also be

interpreted in terms of the relative amplitudes of the several components.

This type of instrument is useful, too, for the study of noise, to be discussed

in the next section.

Tuned mechanical reeds can be used to determine the frequencies and

amplitudes of a complex sound wave, and a modern arrangement of this

sort has been described by Hickman.* An optical beam reflected from

a mirror attached to each reed was used to determine the amplitude of a

particular frequency. Hickman used 144 reeds for the range of 50 to

3109 cycles-sec
-1

.

The possibility of constructing an acoustic diffraction grating for the

analysis of sound was mentioned in Chapter 4. Such a grating is bulky

but quite convenient and rapid to manipulate. Meyer and Thienhaus f

used a vibrating ribbon as a source analogous to the optical slit. The

* Hickman, Jour. Acous. Soc. Amer. 6, 108-111 (1934).

f See Meyer, Jour. Acous. Soc. Amer. 7, 88-93 (1935).
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grating may be used for either a "bright line" spectrum (such as that

characteristic of a violin note) or for the continuous spectrum typical of

"noise."

The analysis of transient sounds presents a special problem. The
acoustic grating and analyzers of the heterodyne and other types can, how-
ever, be adapted to the short times of observation involved in transient

study. Oscillograph pictures and records can also be taken of short

phenomena, to be analyzed at leisure.

The calibration of analyzers is a complicated procedure and current

technical literature should be consulted for details.

10-16 Noise. The continuous acoustic spectrum. Noise is here de-

fined as undesired sound. Sometimes the sound may be musical in nature
but undesirable because it interferes with conversation or some other useful

occupation. Such sound at times consists of a relatively small number of

frequency components, but more often it is a heterogeneous mixture of

frequencies and amplitudes, both of which change rapidly with time.

Because of its great practical importance as a masking agent of useful

sound, the general nature of noise, both in the acoustical and in the elec-

trical form, has been carefully studied from a mathematical and statistical

point of view. Besides its own intrinsic interest, this study is important if

one is to design instruments for correctly measuring noise level. The
final indicating device is some sort of rectifying meter, different types of

which respond differently to noise voltages of the random type. (See

Beranek, Acoustic Measurements, for a full discussion.)

For noise assessment, much practical use is made of the sound level

meter (noise meter), which includes a microphone whose angular pick-up
range should be 90°. The microphone is connected to an electronic

amplifier in whose circuit are included three standard correction networks.
It will be remembered from the appearance of the loudness level contours of

Fig. 9-8 that the sensitivity of the ear varies greatly with frequency. In
addition, the shape of the loudness level contours is a function of the magni-
tude of the level. The correction networks are designed to give to the
amplifier a gain characteristic which is the inverse of the ear characteristic

at three definite arbitrary levels, i.e., 40 phons, 70 phons, and 100 phons.
At the output of the amplifier is usually connected a rectifier and a d.c.

meter whose reading gives the sound level. The characteristics of the
whole circuit must be such as to indicate the square root of the weighted sound
pressures of the different single frequency components in the complex wave.

The readings of the American type of sound level meter, described above,
are only true loudness level readings at the three standard levels. Since
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the loudness contours vary in shape continuously as the level is changed,

the use of only three correction networks means that the readings are

approximate at other levels. It is important to note that the contours of

Fig. 9-8 were derived using only one frequency at a time. There is much

evidence that the ear does not judge sounds of wide frequency range in the

same manner as it does single frequency tones. The sound level meter in its

present practical form is a compromise.

It is usual to introduce a time constant somewhere in the electrical cir-

cuit of the sound level meter so that the fairly rapid fluctuations of the

instantaneous sound level are averaged out at the meter. Depending on

the purpose to which the instrument is to be put, this time constant may

be varied considerably. For steady sounds, the calibration must in any

case agree with the requirements stated above.

Approximate sound levels for certain typical environments are given in

Table 10-1. It is to be noted that even in a "quiet" office the level is as

much as 30-40 db above the threshold of audibility. The average person

is so used to sound levels of this order of magnitude that a really quiet

environment, such as exists within an anechoic chamber, is apt to disturb

rather than to relax.

When the distribution of energy in the different parts of the audible

spectrum must be known, a selective instrument is needed. In this case,

band pass filters may be included to cover the frequency range in steps,

the frequency width of each filter being a matter of choice.

TABLE 10-1*

Typical sound environment Sound level in db

Threshold of pain 120-130

Riveting machine 30-40 ft away 100

Subway with train passing 90

Average city street 70

Average restaurant 60

Average conversation 3 ft away 60-70

Outdoor minimum in city 30-40

Quiet office 30-40

Outdoor minimum in country 10

Threshold of audibility

A spectrum of particular theoretical interest is the so-called "white

noise" spectrum. Such a distribution is uniform over the whole frequency

* Adapted from Colby, Sound Waves and Acoustics. Henry Holt & Co. (1938).
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range. It may be conveniently produced electrically by amplifying the
noise originating at the input of an electronic amplifier. Corrective

networks may be necessary to make the output truly "white." Such a
generator, connected to a loudspeaker, constitutes a useful laboratory test

instrument.

10-17 The measurement of acoustic impedance. As we have seen in

Chapters 5 and 8, the concept of acoustic impedance is most useful in

problems concerned with the radiation and absorption of sound energy.

While in the path of plane and spherical waves in free space the value of zs

may be predicted for certain simple types of sources, there are many cases

where this cannot be done. In particular, the important impedance zn,

characteristic of partially reflecting surfaces, must be determined experi-

mentally. We shall describe briefly a few of the more important methods
of experimental determination.

1. Direct measurement of p and £ at a surface. Since specific acoustic

impedance is defined as the ratio of the pressure to the particle velocity, it

may be computed both in magnitude and in phase once p and £ are known.
The pressure can be measured with probes small enough to avoid serioiis

distortion of the sound field. A velocity type of microphone (the pressure

gradient type) could be used to measure £, but at the present time none of

small enough dimensions is available. A more fruitful method of approach
for porous surfaces is to force a known volume of air through the surface

per unit time (this is the "volume current" X) and to measure p at the

surface with a probe tube. The analogous impedance za can then be com-
puted by the relation za = p/X. A small vibrating diaphragm and the

surface of the sample may be placed

Loudspeaker unit at opposite ends of a very short cy-

lindrical tube. The volume current

is calculated from the known distri-

bution of velocities over the surface

of the circular diaphragm.

2 . Acoustic transmission linemeth-

ods. Of the several methods falling

under this classification, that which

involves the exploration of a station-

ary wave pattern is the most widely

used. The fundamental arrangement is indicated in Fig. 10-15. The
sample at the surface of which the acoustic impedance is to be determined

is placed at one end of a cylindrical tube, while into the other end is piped

the energy from a loudspeaker unit. A movable probe coupled to a de-

Plane of Microphone-

measurement
of zn

Fig. 10-15. Laboratory arrangement for

the measurement of zn .
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tecting microphone may be slid along the axis of the tube. The probe

commonly used for acoustical sampling is simply a small-bore tube whose

outside dimensions are sufficiently small so as not to disturb the pressure

distribution in the region being studied. In general, its effect is to attenuate

the wave by the time it reaches the microphone diaphragm. This attenua-

tion, as a function of frequency, can be calculated theoretically and also

checked experimentally; hence the electrical output of the microphone can

be corrected to indicate the acoustic pressure at the entrance to the probe.

In Section 8-7 it was shown that with the partial reflection of plane

waves at the end of a pipe, a pattern will be produced within the pipe

consisting of two superimposed sets of stationary waves whose antinodes

do not coincide. The pressure amplitudes at these antinodes are

(Pm)total = (Pm)i + (Pm)r (10-13)

and

Wt'otal = (Pm)i - Wr, (10"14)

where the subscripts i and r refer respectively to the incident and to the

reflected waves. By sliding the probe along the tube axis, the positions of

greatest and least acoustic pressure can be located and the total pressures

on the left-hand side of Eqs. (10-13) and (10-14) can be measured. The

maximum pressures in both the incident and the reflected waves can thus

be computed from these same equations. By Eqs. (8-23) and (8-24) the

ratio (pm) r/(Vm)i is directly connected with the normal specific acoustic

impedance zn at the boundary of the reflecting material. If the material

is such that zn is essentially real, and this is quite often the case, the angle 6

in Eq. (8-23) is zero, and we may write Eq. (8-24) as

~(£D- o™>

In this way we can compute the impedance zn from the experimental

pressure data.

Actually, the nature of the stationary wave pattern is significantly

affected by attenuation effects at the walls of the tube. In addition, zn

may well be complex. Under these conditions, the equations given in

Chapter 8 are not sufficient to determine the real and imaginary parts of zn,

but additional equations may be deduced to make the computation possible.

It is necessary also to measure the distances from the reflecting surface at

which the nodes and antinodes occur, as well as to know the attenuation

properties of the tube.*

See Beranek, Acoustic Measurements, pp. 321-329.
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It should be mentioned that when zn has been measured at the surface

of an absorbing material, the absorption coefficient for normal incidence,

an,
has also been measured indirectly. Once the pressure ratio M has been

determined, the value of an can be computed from the relation

an = 1 - M2
.

Since 9 does not enter, the determination of an is somewhat simpler than the
determination of zn .

To determine the Sabine absorption coefficient, which assumes sound
waves arriving from all directions, a quite different technique is usually

employed. In Chapter 12 this measurement will be discussed in connection
with the reverberation properties of rooms.

3. Bridge methods. There are a number of methods of measuring
acoustic impedance which are closely analogous to the bridge methods of

electrical measurement. Many of these arrangements involve considerable

electrical as well as acoustical detail, and their operation would be diffi-

cult to make clear within our allotted space. One of the earlier types of

bridges, devised by G. W. Stewart,* is almost wholly acoustic in character
and its theory is fairly simple. We shall therefore describe it briefly, as

illustrative of the measurement possibilities along this line.

The construction of the bridge is shown in Fig. 10-16. Two long,

straight, cylindrical tubes are coupled, at one end, to loudspeaker units, the

Tufts of felt

J
Oscillator

%fe%W:ao A^t& |^

tc

-Microphone

Amplifier

(Sp).

jgagjggiMV#^^3
Dlifier \\ J

Meter-7

'2 ^—Adjustment for length

Fig. 10-16. Acoustic impedance bridge. (After Stewart)

two units being identical in design. The loudspeakers are driven from a
common oscillator by means of a dividing network, so that the relative

acoustic energy delivered to the tubes can be continuously adjusted. At
some distance from the loudspeaker ends of the tubes, an acoustical con-

Stewart, Phys. Rev. 28, 1038 (1926).
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nection is made by means of the tube tc . Another pipe, leading to a micro-

phone, is attached at the center of this branch tube. The microphone has

its own amplifier and measuring meter. By means of a telescoping arrange-

ment, the length of one tube can be varied as shown.

This bridge is particularly well suited to the measurement of the acoustic

impedance at the end of a horn or acoustical conduit. The device to be

used is attached at one side of the upper straight tube as shown. Assuming

the loudspeakers to be operating at a fixed frequency, we may express the

principles of continuity of pressure and of volume current X (equal to SQ

at the junction in this way:

and .... (10
-16)

Xi — Xr — Xb ~r Xt, J

where the subscript i refers to the wave incident at the junction, originating

at speaker Sph the subscript r to the reflected wave, the subscript b to the

wave progressing into the horn or conduit, and the subscript t to the wave

traveling towards the far end of the straight tube. To eliminate compli-

cating reflections at the ends of the long tube, the latter (and its parallel

neighbor) is partially filled with tufts of felt.

In addition to the above relationships, we may write

Y PiS Y _ prS
Ai = "J A r — '

PqC PqC

(10-17)

PqC {Za)b

The quantity (za)b represents the analogous impedance at the entrance to

the side branch, and is the quantity to be determined. The quantity S is

the cross-sectional area of the bridge conduit.

By combining Eqs. (10-16) and (10-17), we obtain the ratio

Pi = ?M* (10-18)
Pi 2(za) b +(poc/S)

K J

In this equation we must recognize that the pressures are the instantane-

ous values in the complex form, and that p t and pi are not in general in

phase. We express this phase relationship by stating that

Vt Vl
{pm)i

'

where is the phase angle, and (pm)t and (pm)i represent peak values of the

acoustic pressures. Hence Eq. (10-18) may be written

(Vm)t 2(za)b
/<
o_im

(Pm)i
€

~2(za)b+(poc/S)
K J
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Equation (10-19) is the fundamental relationship for this type of bridge.

If we can measure the ratio (pm)t/(pm)i and the phase angle 0, we can, by
reducing Eq. (10-19) by the methods of complex algebra, compute the real

and imaginary parts of (za)b-

The experimental procedure is as follows. With the branch b removed
and the hole closed, the voltages applied to the speakers are varied until,

due to interference, the detecting system attached to the cross tube reads
zero. (A small adjustment of the length of the lower tube may be neces-

sary to equalize the phases.) Then the branch b is introduced and the
balance again made, both for pressure amplitude and for phase. The ratio

(Pm)t/(Pm)i may be computed by

(Pm)i Ei/Ei
(1° 20)

where Ei/E2 is the ratio of the two voltages applied to the loudspeakers

with the branch out; and E[/E'2 is the ratio with the branch connected. To
obtain the phase angle, note is made of the change of length, d, of the lower
tube necessary to equalize the phases after the branch is inserted. The
phase angle (for which compensation is made in the lower tube) is then

= 2tt^ (10-21)

With this information, (za) h can be computed in the manner indicated above.

Measurements made on this bridge are subject to serious errors under
certain conditions. The analyzing of the chief sources of such errors is left

for the reader.

10-18 Conclusion. No attempt has been made in this chapter to give

a complete detailed survey of the many special techniques of acoustical

measurement. The apparatus of measurement is increasing steadily in

variety and is constantly being improved. To be well informed, it is neces-

sary to keep abreast of current technical literature.

PROBLEMS
1. Measurements of the absorbing 2. From the graph of Fig. 10-2, find

properties of the wedge type of wall struc- the absorption coefficient for the wedge
ture used in modern anechoic rooms (Fig. type of wall surface at a frequency of
10-1) indicate a reduced effectiveness at (a) 100 cycles-sec-1

,
(b) 1000 cycles-

the lower frequencies (see the graph of sec
-1

.

Fig. 10-2). A major factor in this be-
havior is the phenomenon of diffraction. 3. (a) In the case of the pistonphone
Explain. (Section 10-5), why should all dimensions
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be small compared with the wavelength?

(b) Derive Eq. (10-1).

4. (a) If there were no slots in the

plate of the electrostatic actuator (Section

10-6), what error would enter into the

calibration of the microphone? (b) Would
the calibrated sensitivity of the micro-

phone then be higher or lower than the

actual sensitivity when operating in a

field of sound?

5. (a) For the Rayleigh disk, why is

the position parallel to the direction of

stream flow unstable? (b) Why is the

position perpendicular to the stream flow

stable? Make this clear with a vector

picture.

6. The double-button carbon micro-

phone is briefly described in Section 10-10.

(a) Draw a simple circuit for such a

microphone, making clear the push-pull

action, (b) Explain just how the push-

pull action eliminates even harmonic dis-

tortion due to the nonlinear behavior

of each button, using an argument based

on the graphical representation of the

current variation for either button.

7. The spacing between the two metal-

lic surfaces in the capacitor microphone

should be small compared with the

diameters. Why? (There is more than

one reason.)

8. (a) From Eq. (10-11), why is a

polarizing potential needed with the

capacitor microphone? (b) For the volt-

age across the resistor in Fig. 10-9 to be

independent of the frequency in the sound

wave, the value of the resistance must be

very large. Why? (c) Would the pres-

ence of distributed capacitance in a cable

between the microphone and the resistor

affect the sensitivity of the microphone at

any one frequency? (d) Would this same
capacitance affect the uniformity of re-

sponse to waves of different frequency?

(e) Answer parts (c) and (d) for the case

where the cable capacitance operates be-

tween a tap on the resistor and one end.

9. In view of the differential sensitiv-

ity of the ear for sounds of variable

intensity, is the peak in the curve of Fig.

10-10 significant? (See Chapter 9.)

10. Practical microphones of the pres-

sure type exhibit somewhat greater sen-

sitivity at high than at low frequencies,

due to diffraction effects. (The effect is

greatest with normal incidence.) Show
that this behavior is reasonable in the light

of the radiation properties of an acoustic

piston, making use of the general reciproc-

ity principle.

11. (a) Discuss all the possible sources

of error in the measurement of za by
means of an acoustic bridge of the type

designed by G. W. Stewart, (b) If the

two speakers had somewhat different

resonant frequencies, would the precision

be affected? (c) Would one expect the

precision to be greater at low frequencies

or at high frequencies? Explain.



CHAPTER 11

REPRODUCTION OF SOUND

11-1 Introduction. With the almost simultaneous invention of the

telephone and the phonograph there began a historic development in

applied physics which was to draw strongly upon three important fields,

i.e., those concerned with the principles of electricity, of mechanics, and

of acoustics. The appearance of radio telephony in the 1920's furnished

still further stimulus to experimentation and improvement, as did also the

revived interest in the phonograph in its newer, electrical form.

It is interesting to note that the acoustical aspects of the reproduction

of speech and music were at first sadly neglected. For many years the

telephone transmitter and receiver remained practically in their original

form as electromechanical and electroacoustic devices. The early radio

loudspeakers were simply glorified telephone receivers, and almost any

short horn that had some kind of flare was deemed adequate as a coupling

agent.

This lack of interest in the acoustic link in the chain seems at first diffi-

cult to understand, in view of the long and honorable history of the subject

of acoustics. The explanation of the delay is probably twofold. For one

thing, the novelty and excitement of the appearance of the phonograph

and the radio set were such that for a long time no serious objections were

raised to the acoustic inadequacies. As the novelty wore off, listeners

became more critical, and engineers began to think about the acoustical

design, or rather, lack of design. The second reason for slow development

along this line is that it took some time before the principles of the impor-

tant "wave filter" of G. A. Campbell were applied to electromechanical

systems. With the papers of A. G. Webster, W. P. Mason, A. C. Bartlett,

and others, the concept of mechanical and acoustical impedance rapidly

took shape, and the analogy between the behavior of electrical circuits and

that of mechanical and acoustical systems was recognized as a tool of great

usefulness. Eventually this knowledge began to affect the design of

transducers of all sorts, such as the mechanism of the phonograph pickup,

the telephone receiver and transmitter, and the loudspeaker constituting

the coupling device between the electrical circuit and the sound medium.

Important advances have recently been made in the design of electro-

acoustic transducers, but it is still correct to call these the weakest link in

the chain of reproduction of speech and music. This is not due to lack of

260
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attention and study in recent years, but to the intrinsic difficulties in effec-

tively transforming electrical energy into acoustical energy over a wide range

of frequencies. In this chapter, we shall try to point out some of the

chief difficulties, and to describe a number of practical solutions.

11-2 The general problem. The problems connected with the repro-

duction of sound over a wide range of frequencies really begin at the source

itself. Whether the final acoustic output is from a phonograph, a public

address system, or a radio loudspeaker, any initial pressure variation is

picked up, in modern systems, by an electrical microphone and is then

amplified electronically. Subsequently, the signal may have a varied

history. In the phonograph it may be supplied to the cutter head of the

recording mechanism or to the magnets of a tape recorder. In either

system, the recorded information must eventually be extracted from the

record or the tape in electrical form and again amplified. Eventually

electrical power is delivered to an electroacoustic transducer (actually an

electro-mechanico-acoustic transducer) and sound waves are set up in the

air which it is hoped are faithful replicas of the original waves in front of the

microphone. In the radio set, there is the additional complication that

between the first and last amplifier appear the radio transmitter and the

radio receiver, with all their complicated circuits and behavior.

Since this is a book on acoustics, we would naturally choose to concen-

trate on the acoustic aspects of this complicated chain of transformations,

and this chapter is devoted primarily to the final transformation back to

sound waves. But a loudspeaker is primarily a mechanical system, free

to vibrate, and the forces which make it vibrate are electrical or magnetic,

or perhaps electromagnetic in nature. We are therefore led inevitably to

a consideration of the mechanical and electrical links in the chain. Indeed,

as we shall see, some features of the electronic amplifier that delivers its

energy to the final transducer are closely linked with the behavior of the

loudspeaker, so that we shall have to make some general comments on that

score in connection with our discussion of the transducer itself.

If the system described above were to handle vibrations (currents) of

a single frequency only, the problem would be greatly simplified, especially

from the acoustic point of view. For most applications, the electrical

energy supplied to the final transducer is small, so that the matter of effi-

ciency is of little interest. (We shall comment on efficiency later.) It is

not difficult to build circuits and vibrating mechanical systems whose re-

sponse to amplitude variations is essentially linear at any one frequency.

Therefore a single sinusoidal electrical voltage at the input of the system

can be amplified with little difficulty, and the electrical energy may be
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eventually transformed back into sound energy with little distortion of

wave shape. Almost any type of loudspeaker, if not driven to too high an
amplitude of motion, will give rise to a variable sound pressure which at

any one frequency is a reasonably close replica of the electrical variation

applied to it.

Speech and music, however, contain a wide range of frequencies. As
we have seen in Chapter 1, the existence of a resonant frequency is one of

the fundamental features of the motion of a particle free to vibrate. In
the neighborhood of that frequency the response to a given outside periodic

force may be large; at other frequencies the response will, in general, be
much smaller. The radiating plate or diaphragm is more complicated in

its behavior than is a particle, as we saw in Chapter 7; there may be many
resonances. Suppose, then, that a voltage having a complex wave form
that faithfully follows the shape of the acoustical wave is applied to the

input of an electronic amplifier, the output of the latter being connected

to an electroacoustic transducer. Both amplifier and transducer must be
capable of handling all the frequency components that are present, so as

to maintain their original relative prominences, and, one would expect,

the original relative phases. Such a system must therefore satisfy the

triple requirement of linearity with respect to amplitude variations, uniform

over-all response over a frequency range of the order of 500 : 1, and a net

over-all phase shift which is ideally zero degrees.

Any failure to meet the above requirements is called a source of distor-

tion. As we have mentioned earlier, phase shift or phase distortion is not

ordinarily important to the ear in sounds having a large number of assorted

frequency components, which is fortunate, as zero over-all phase shift at

the upper end of the audible spectrum is difficult and expensive to achieve.

(It is difficult enough to minimize phase shift in electronic circuits; it is

practically impossible to keep such shifts to a low value in the mechanical

response of the transducer diaphragm, especially in the neighborhood of

the inevitable resonances. See the discussion in Section 1-21.) It is now
possible to build circuits and amplifiers which are linear for amplitude

variations and have little or no frequency discrimination over a range

greater than that to which the ear will respond. When it comes to the

behavior of the electroacoustic transducer, however, the problem is much
more difficult. In the next section we shall discuss some of the difficulties

to be overcome.

11-3 An ideal transducer. Suppose the rectangular area in Fig. 11-1

to represent an acoustic piston whose mass and stiffness (K) are negligibly

small. The mode of support involves no appreciable dissipative force.



2^3] AN IDEAL TRANSDUCER 263

Only the right-hand face is exposed to the air, so that it is a single source.

The area £ of its radiating face has a diameter large compared with the

wavelength, and a beam of plane waves
2^Q

will therefore be produced. i
k-Area =S

Under these conditions, the instan-
^ ^"orf - I'fecS

taneous driving force, Fdriv, will al- driv pis on

ways equal the total force due to the «

. Fig. 11-1. Driving force and air

air
>
or

reaction force for an acoustic piston

Fdriv = pS = &>oC$, (H-1) of negligible mechanical impedance.

where p is the acoustic pressure. Since the velocity x of the piston is equal

to the particle velocity in the air near it, we may also write

Fdriv = xpocS. (H-2)

The average power delivered by the driving force will then go entirely into

wave motion and will equal

(Fdriv)rmsXrms = (xims)
2poCS = (|rms)

2
poC>S. (11-3)

According to Eq. (11-1), the acoustic pressure in the radiated wave is

proportional to the driving force. For a given value of the driving force,

x (or © is constant and therefore, by Eq. (11-3), the acoustic power is

constant. Hence, if the amplifier and driving mechanism are such that

the force applied to the piston is proportional to the acoustic pressure in

the original wave, independent of the frequency, it should be clear that the

pressure and intensity in the radiated wave will follow the corresponding

variations in the original disturbance. Such an acoustic piston may then

be called an "ideal" radiator for complex sound waves.

The quantity p cS in Eq. (11-2) is the effective mechanical impedance

of the air-loaded piston, or its "radiation impedance." Entirely apart from

the effect of the air load, for any actual vibrating diaphragm there will be

a mechanical impedance for the driven mechanism, due to its inertia, its

stiffness, and the presence of frictional forces at the supports. If zm is the

mechanical impedance of the piston without the effect of the air, Eq. (11-2)

must be written .

Fdriv = x(zm + pocS), (H-4)

where zm is, in general, complex. We may also write

(Fdriv)rms
= xim3V(R + pocSy + X\ (H-5)

where R and X are the magnitudes of the real and imaginary parts of zm .

With a constant driving force, the maximum value of x in Eq. (11-4) will

not remain constant at all frequencies, due to the variations in zm,
whose re-
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active component is a function of frequency. Hence the average real power
delivered by Fdliv will vary with the frequency. Moreover, not all of this

real power will be radiated as waves, because of the dissipative part of zm,

that is, R. The average radiated acoustic power is (xIms)
2
p cS, which is less

than the total power delivered by the driving force, i.e., (xTmB)
2(R + p cS).

In addition to these deficiencies, any actual acoustic radiator will never
have dimensions large compared with the wavelength except at the higher

frequencies. At medium and low frequencies it will therefore become a
source of diverging waves, the wave front shape becoming spherical at very
low frequencies. For purposes of sound diffusion this is good, but the
radiation efficiency drops at those frequencies, as shown by the graph of

Fig. 5-11. The specific radiation impedance at the piston becomes
complex at the lower frequencies, and its real part falls below p c. All of

these effects cause distortion of the radiated complex wave.
We must not neglect the electrical aspects of transducer design. Since

transducers differ in this respect, we shall now consider the particular

features of some specific driver mechanisms.

11-4 Early types of transducers. 1. Magnetically driven iron reed. To
this classification belongs the ordinary telephone receiver, with its circular

iron diaphragm clamped at the edge. The plate is made to vibrate by
virtue of the varying magnetic force between it and the pole of an electro-

magnet which carries the signal current. Such a plate is attracted at each
peak of the current, and to prevent this virtual doubling of the frequency
of the plate vibration as compared with the frequency of the current

variation, a constant flux component is introduced into the magnetic cir-

cuit by means of a permanent magnet. The signal current will then
strengthen or weaken the pull associated with the total flux at a rate iden-

tical with that of the signal. An analysis of the behavior of the system
shows that a sinusoidal variation in the magnet current will give rise to a
periodic force containing frequencies which are harmonics of the current

frequency, as well as the current frequency itself. By making the constant

flux bias much greater than the differential flux caused by the signal, the

harmonics can be suppressed. The driving force can be shown to be
proportional to the value of the steady flux.

As an earphone transducer, this design is simple and adequate. The
thick iron diaphragm has strong resonances near the middle of the speech
band, which aid efficient reproduction of speech but which would cause con-

siderable distortion in the reproduction of music. Heavier units can be
designed to handle considerable power, but the defects remain. A mag-
netically balanced version of the reed mechanism was used in early loud-
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Fig. 11-2. Balanced ar-

mature type of loudspeaker

mechanism.

speaker design (Fig. 11-2), and this design, with a light armature coupled

mechanically to a large paper cone, makes possible an acoustic radiator

capable of better low frequency radiation and

somewhat less marked resonance distortion. The

fundamental resonant frequency in this design

can be lowered almost to 100 cycles-sec"1
,

a

change in the right direction.

2. The electrostatic loudspeaker. It is possible'

to employ the design of the capacitor microphone

in an acoustic radiator. As in the microphone,

a polarizing d.c. potential, E , is used. If a sinu-

soidal variation in potential, e, due to the signal,

is then introduced in series with E ,
there will be

a periodic force of attraction between the plates. If one of the plates is a

flexible membrane, it will vibrate and radiate sound waves. As with the

transducer just described, harmonics are generated which can be kept low

in amplitude by the use of a high polarizing potential. The instantaneous

driving force per unit area is given by

^ driv " 4xd2

where d is the spacing between the plates. (All units are electrostatic.)

To ensure a sufficiently large driving force, E must be large (of the

order of hundreds of volts) and d must be small. The membrane must

then be stretched tightly to prevent the two plates from touching under

the steady electrostatic force. A push-pull arrangement has been used to

eliminate the steady force of attraction, setting the thin membrane be-

tween two stationary plates, each charged to the same potential. Even

so, the device is fragile and requires its own potential source, so that this

type of transducer has never been widely used.

3. Piezoelectric-driven system. A piezoelectric crystal is a reversible

transducer. An alternating potential applied to sheets of foil or to metal

plates cemented or clamped to a pair of crystal surfaces will produce

mechanical deformation of the crystal. This motion can be transferred,

by the use of a lever, to a separate plate or diaphragm which then acts as

the sound radiator. The system is not well adapted to the radiation of

large amounts of acoustical power in the range of audible frequencies,

since the required amplitudes of motion are in danger of shattering the

crystal. In the range of ultrasonic frequencies, however, the crystal

transducer has been an exceedingly useful source of high intensity longi-

tudinal waves. In this frequency region the required amplitudes are
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smaller. Crystals may be cut so as to resonate at frequencies in the
neighborhood of 50 kc-sec-1 or higher. The mode of internal vibration is

in this case perpendicular to the face of the crystal, so that the crystal

surface becomes the radiating surface. We shall have
more to say of such generators in the next chapter.

Driving, or

"voice" coil

Soft iron -i

11-5 Transducer with electromagnetic drive. The
electromagnetic type of drive mechanism has become
almost universal among modern transducers designed

for the audible range of frequencies, and we shall

therefore discuss its operation in some detail. The
essential parts of the mechanism are shown in Fig.

11-3. The vibrating diaphragm is in the form of

I
\ a truncated cone, made of paper in the larger sizes or

" -
ma

•

n \ of light metal or plastic in units designed for use with

a horn. At the base of the cone is attached a short

cylindrical form, on which is wound a relatively

small number of turns of wire. The cone is held in

position by two elastic rings, as shown, so that the

driving coil is normally held symmetrically within

a radial magnetic field of constant strength. The
source of the field may be either an electromagnet or

a slug of permanently magnetic material. Connec-
tions to the coil are made by flexible leads.

Since the conductors making up the coil lie every-

where perpendicular to the radial field, the presence

of an alternating current in the coil, constituting the

signal current, will result in a periodic axial force

upon the coil and therefore upon the cone to which
it is attached. The axial vibration of the cone will

then set up longitudinal sound waves in the air. The
vibrating system, even with the cone exposed to the

air, is always underdamped, so that there is a funda-

mental resonant frequency. This frequency, for practical loudspeakers,

may range from several hundred down to 30 or 40 cycles-sec-1 , depending
on the size of the cone and its particular construction. This resonant fre-

quency is an important factor in the acoustic behavior of the loudspeaker,

as we shall see presently.

11-6 "Blocked" vs "motional" impedance. If the movable part of the

mechanism under discussion is clamped mechanically, the electrical im-
pedance as measured at the coil terminals is called the " blocked" imped-

Voice coil form

(b)

Fig. 11-3. Electro-

dynamic loudspeaker.

(a) Essential parts.

(b) End view of mag-
netic structure.
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ance the complex expression for which we shall label zb . The magnitude

of z b (i.e., the modulus, Z b) as so measured for a typical loudspeaker

usually varies with frequency in the manner shown by the solid curve ol

Fig 11-4 Up to a frequency of several hundred cycles-sec l
,
Zb is prac-

tically constant, and is only slightly greater than the ohmic resistance of

the coil. As the frequency is raised, Z b rises gradually, due to the increased

importance of the coil inductance. Even though there is iron within the

coil, the coil inductance is small, since the iron is near saturation because

of the large steady flux passing through it.
_

If the cone and the attached coil are free to move (as is true when the

loudspeaker is in use), the graph of the electrical impedance Z b vs frequency

has a form similar to that shown by the broken curve in Fig. 11-4 lne

peak at the lower end of the frequency scale occurs at the mechanical

resonance frequency of the moving system; the value of Zb at this fre-

quency may be many times the value in the mid-frequency region. In the

complex form, the difference between the complex electrical impedance with

the cone clamped and the complex electrical impedance with the cone free to

move is called the "motional" impedance. For this impedance we shall use

the symbol zem . It is the existence of this motional impedance that entirely

accounts for the production of sound waves.

11-7 Motional impedance and mechanical impedance. The relation-

ship between motional impedance and the mechanical impedance of the

moving system is easy to discover in the case of the electrodynamic trans-

ducer. The driving force acting upon the coil is given by

Fdriv = Bli, (H-6)

where B is the flux density in the gap, I is the total length of the conductor,

and i is the instantaneous current.
_
H the coil has an axial velocity x, the

emf induced therein due to its motion is

e = Blx. (H-7)

The electrical impedance due to the motion of the coil is

* = (1^/-, (H-8)
l r driv

from Eqs. (11-6) and (11-7). The mechanical impedance is connected

with the driving force through the relationship

w - rz ,
(H-9)

-Fdriv — XZm>, \ '
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where zm. is the total mechanical impedance of the cone system plus the
impedance due to the presence of the air (mention of the latter was made
in Section 11-3). By combining Eqs. (11-8) and (11-9), we obtain

(BiyV- (n-io)Zem —

In the mks system, this equation may be used as it stands, provided the
appropriate units are used for B and zm. (in the case of zm> the unit is not
the mechanical ohm characteristic of the cgs system) . In the cgs system,
Eq. (11-10) must be rewritten,W—

(H-ll)Zem — 10-9 electrical ohm.

o
c
o
•o .—
<D O
Q. O

IS
"S o

Ui N

N Coil free to move

Coil motion blocked

(The reader should check the factor 10~ 9
.)

If there is no baffle around the speaker cone and if no horn is coupled to
it, the total mechanical impedance zm> is mainly due to the impedance zm
of the cone and coil system, with the presence of the air playing a relatively
minor part. At the middle and lower frequencies, this system may be
treated as approximately equivalent to a particle. At the frequency of

mechanical velocity resonance, zm is

a minimum and all real, since the

mechanical reactance is zero. There-

fore, from Eq. (11-11), zem will be a

maximum and real. This is the

reason for the peak in the broken

curve of Fig. 11-4. It is interesting

to note that due to the inverse rela-

tionship, at frequencies lower than

the resonant frequency (where the

reactive part of zm is predominantly
due to compliance), the reactive part of the motional impedance is pre-

dominantly inductive. For the same reason, at frequencies higher than
that for resonance, the reactive part of zem is predominantly capacitive.

At resonance, zem is resistive.

11-8 Motional impedance and acoustic radiation. If we apply the
results of the previous section to the " ideal" transducer considered in

Section 11-3, we find that since in this case zm> is due solely to the air and
is, for the plane wave radiator, p cS, the motional impedance is constant at

all frequencies and is real. Hence the average electrical power radiated as

sound power is given by I2
ImsZem , where in this case

(Bl)>

Frequency

Fig. 11-4. "Free" and "blocked" elec-

trical impedance of electrodynamic loud-
speaker.

£ em —
PocS

lO"9 ohm. (11-12)
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The motional impedance of practical loudspeakers cannot be discussed

in terms of Eq. (11-12) because it is necessary to add the mechanical im-

pedance of the piston itself to the mechanical impedance due to the pres-

ence of the air. The correct expression is that of Eq. (11-10) or (11-11).

Expanding the denominator, we may write

2
(Bi)nor>

(11_13)
Zem — - FT Jf\ n v '

[r + S(z.)r] + J \jarn - -) + S(zs)xj

In this expression, r is the internal damping coefficient of the cone, (zs) R

and (zs)x represent the real and imaginary parts, respectively, of the

average specific acoustic impedance over the surface of the cone, and S is

the effective cone area.

To estimate the acoustic efficiency of an actual loudspeaker and to see

qualitatively how this efficiency may vary with the driving frequency, it

is useful to examine Eq. (11-13).

The situation in the neighborhood of resonance is the simplest to analyze.

While all but one of the terms in the denominator on the right-hand side

of Eq. (11-13) have strong frequency dependence, the constants for actual

loudspeakers are such that velocity resonance virtually occurs when the

expression in j is zero. We may therefore write that at resonance

^ (Bin0~\ (H_14)Zem - r + S(zs)R

Substituting in Eq. (11-14) values which are typical of an actual cone

speaker,* of diameter 6 inches, mounted in a very large (virtually infinite)

baffle, we have

^Kio>QQO)(W(iQ-9U 27ohms.Zem— 100+ (130) (1)

Such a speaker may have an "ohmic" resistance (virtually equal to the

"blocked" impedance) of several ohms. Hence, at resonance, most of

the total electrical impedance is due to zem .

Not all of the power delivered to zem ,
however, goes into sound radiation.

Since for a given voltage Ems across the voice coil, the power £2 delivered is

inversely proportional to the electrical impedance, we may write

Q«[r + S(z.)b].

* Numerical data of an experimental nature used in this discussion have been

kindly furnished by Dr. A. Wilson Nolle, Department of Physics, University of

Texas.



270 REPRODUCTION OF SOUND [CHAP. 11

Only the power associated with the term S(z s)R represents radiated sound.
Hence the efficiency of the speaker at resonance is

Efficiency^-j^ 100%
r + o{zs)r

IQf)

100 ^ 56%.

(H-15)

— 100 + 130

At the higher frequencies (zs)R becomes larger and approaches the
value pQc (see Fig. 5-11). However, at frequencies well above resonance
the reactive part of zm> predominates over the resistive portion, due pri-

marily to the magnitude of the term urn. If we write Eq. (11-13) in the
form

CBQ 210-9

where R f and X' represent the real and imaginary parts, respectively, of

zm', we see, upon rationalizing the denominator, that the real part of zem

becomes

, . R'jBiyiQ-9

(Zemjreal — /p/\2 I (X'\ 2
' (11—16)

At the upper end of the audible spectrum the magnitude of X' is so great

that the value of (zew)reai niay be reduced to a small fraction of an ohm.
This is considerably less than the ohmic resistance of the voice coil. As
a result, the over-all efficiency as a sound source is low and may drop to

much less than 1% at the high frequencies.

In general, the efficiency of a loudspeaker at resonance represents a
maximum. Considering the whole range of audible frequencies, few
ordinary transducers have an average efficiency of greater than 10%.

11-9 Behavior of the transducer in a vacuum tube circuit. The elec-

trical impedance of the voice coil is at all times low. To efficiently deliver

power to the coil from a vacuum tube amplifier, an impedance matching
transformer is necessary between the coil and the high-impedance plate

circuit of the tube. The effect of this transformer is to introduce into

the tube circuit an electrical impedance Ze, mainly resistive, of several

thousand ohms, rather than the few ohms characteristic of the coil itself.

The way in which the reactive components of the total impedance of the

voice coil are affected by the transformer action is somewhat complicated

and will not be discussed here. In general, the transformed impedance vs

frequency follows a graph very similar to that shown in Fig. 11-4 for the
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coil itself, except, of course, at the higher numerical values of the trans-

formed impedance.

The behavior of the cone is markedly affected by whether the vacuum tube

circuit can be considered to supply a constant current to the speaker, or a

constant potential. If the internal resistance of the vacuum tube is much

higher than the transformed speaker impedance, the variations in Ze with

frequency will not greatly affect the current. With a constant current

there will be a constant force on the coil. Due to the mechanical resistance,

the velocity and amplitude of the cone will be greatly increased in the

neighborhood of the resonant frequency (Fig. ll-5a).

Amplifier with

high output

impedance

11

< O

(a)

Frequency

Amplifier with

low output

impedance

-o o
2 E
"o. a>

|o< o

(b)

Frequency

Fig. 11-5. Effect of electrical output impedance of amplifier upon loudspeaker

steady state cone motion in the neighborhood of resonance.

If the vacuum tube has a low internal resistance, the transformed

impedance may be considered the main impedance in the circuit. In this

case the applied potential is approximately constant for a signal of fixed

amplitude, regardless of frequency, and therefore when Z e is high (near

resonance) , the current will be low. This will reduce the driving force in the

neighborhood of resonance, thus tending to make the response in that fre-

quency region much less pronounced (Fig. ll-5b) .
This latter situation is

generally preferred, partly to reduce the excessive response at the resonance

frequency and partly for the following reason.

From the mechanical point of view, the cone system is actually under-

damped. Therefore when the signal has stopped, a transient vibration

may continue for a fraction of a second, producing sound which was not in

the original wave. By connecting the loudspeaker to a vacuum tube of low

internal resistance, electromagnetic damping due to the motion of the coil in

the speaker magnetic field will be relatively rapid, since the induced
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currents will be large. This effect is concerned with the loudspeaker's
transient response and is important in high fidelity sound reproduction.

11-10 Behavior of the cone vs the acoustic piston. It should be clear

from the discussion of Section 11-3 that the mechanical impedance of the
moving system (the cone and the coil) for the mechanism being considered
should be as small as possible in comparison to the radiation impedance.
Therefore the cone mass should be small and the compliance as great as
possible. Also, in the interests of efficiency, the dissipative forces at the
supports should be small. (Some dissipation at the supports is desirable,

however, to reduce the time of the transient motion of the cone.)

A cone of paper has small mass and, because of its shape, has an amazing
degree of rigidity under the action of axial forces. The rigidity is desir-

able in order that the cone behave as nearly as possible like

an ideal acoustic piston; the motion of its surface will then
most closely reproduce the motion of the small coil attached
to its apex. At frequencies below about 500 cycles-sec-1

the cone is apparently quite rigid. At higher frequencies,

however, the cone begins to behave like a thin plate; flex-

ure sets in, both along and at right angles to the elements
of the cone, and transverse motion of the paper results.

At certain frequencies, stationary wave patterns are set up
over the surface of the cone. These transverse motions
affect the radiation of longitudinal sound waves in a very
complicated manner, since the vibrations of certain regions

on the cone will obviously be out of phase with the motions
of other regions (Fig. 11-6). The many peaks and valleys

in the sound pressure observed in front of a loudspeaker of

this type, throughout the higher range of frequencies, are

largely due to this so-called "cone breakup." By pressing into the paper
circular corrugations concentric with the axis of the cone, many of the
transverse wave motions just referred to are discouraged.

From another point of view, these somewhat elastic regions can be
considered elements in a mechanical low-pass filter, the inertial elements
being the relatively rigid regions between the corrugations (see Chapter 12).

Thus the higher frequency motions never reach the outer sections of the
cone. This has the beneficial effect of reducing the total mass which is in

motion at the higher frequencies. At the upper frequencies, the mechani-
cal impedance of the cone system is mainly a reactance of the inductive
type, and it is desirable to keep the mass small; otherwise the velocity

response (x = Fdriv/com) will fall off rapidly and so will the intensity of the

Fig. 11-6.

Cone breakup.
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radiated sound. One might also expect that the reduction in the effective

area of the vibrating surface would cause the radiated sound to fall off

markedly at the higher frequencies. Actually, however, the rest of the

cone, relatively passive in the presence of vibrations at the apex, supplies

some of the coupling action of a horn (as discussed in Chapter 5) and so

prevents too serious a decrease in efficiency.

11-11 Acoustic coupling problems. In Chapter 3 it was pointed out

that when acting as a double source, an acoustic piston is a very poor

acoustic radiator. To ensure single source action, one simple solution is to

use a baffle. The size of the baffle depends on the desired low frequency

limit for efficient radiation, and the effect is best investigated experi-

mentally. It is found that the transition between single and double source

behavior takes place rather critically when the baffle dimension (assuming

a circular shape) is a little less than X/2. For example, a plate 5 ft in

diameter will ensure single source action (each side of the cone acting

independently) above a frequency of about 100 cycles-sec"1
.

Below this

frequency the radiation will fall off rapidly because of interference between

the front wave and the back wave. When the distances from the micro-

phone to the front and to the back surfaces of the piston (or cone) differ by

about one wavelength, a sharp dip in the acoustic pressure is observed

(Fig. 11-7). This critical cancella- ^
tion is to be expected, since the

front and back waves start out just

180° out of phase.

In the frequency region where

the baffle is effectively infinite in

area, a constant velocity imparted

by the driving mechanism to an

acoustic piston does not ensure uni-

form radiation of energy at all fre-

quencies. As the graph of Fig.

5-11 indicates, even with an infinite

baffle the transmission coefficient

r, a measure of relative radiated

energy, falls off with frequency.

Assuming constant piston velocity,

•^30
>

2? 20

10

<E 30 100 1000 10,000

Frequency in cycles -sec"

Fig. 11-7. Relative acoustic pressure

level 10 ft in front of an 8-inch loudspeaker

mounted in the center of a square flat

baffle 3 ft on a side. Dip at 500 cycles-sec-1

is due to destructive interference of front

and back waves. (After Olsen)

is approximately proportional

to "tftTsquare of the frequency at the lower end of the spectrum, unless

the piston has an impossibly large diameter. This would seem to be an

insurmountable difficulty in the design of a radiator of wide frequency

range.
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The fundamental mechanical resonant frequency of the cone and coil

system of the average electromagnetic transducer designed for direct sound
radiation lies in the lower part of the audible spectrum. The best design
places the resonance at the lowest frequency which it is desired to radiate,
or preferably slightly below this limit. The reason is simple. At fre-

quencies above resonance, the reactive component of zm (large compared
with the resistive component, except near resonance) soon becomes essen-
tially inertial in nature and its magnitude is equal to com (neglecting the
smaller reactance due to the compliance). As a result, the velocity re-

sponse of the cone is not uniform with frequency, assuming a constant
driving force. As the frequency is lowered, x varies inversely with/. Thus
the increased velocity at the lower frequencies may be made to approxi-
mately compensate for the reduction, at those frequencies, in the real part
of the radiation impedance. This artifice, however, may lead to nonlinear
distortion if the amplitude of the cone motion becomes too great at fre-

quencies near cone resonance.

Below resonance both effects are in the same direction, since the mechan-
ical impedance becomes that due to compliance and therefore increases
with a drop in frequency. As a result, little radiation occurs below the
resonant frequency. It is obviously desirable, then, to place the resonant
frequency as low as possible. This is not difficult in cones with a diameter
of at least one foot. In the smaller sizes it is hard to reduce the stiffness

of the cone suspension sufficiently to achieve a low resonant frequency and
still retain a rugged construction. However, the smaller speakers are used
largely in compact radio sets where the baffling is very inadequate anyway,
and an increased efficiency associated with a higher resonant frequency is

a desirable goal.

At the higher frequencies, where according to the graph of Fig. 5-11 the
specific acoustic impedance at the piston becomes constant at the value

p c, the increase in the mechanical reactance with frequency, due to the
choice of the resonant frequency, becomes a detriment and leads to reduced
radiation. As shown in the discussion of Section 11-10, the behavior of
the cone at the higher frequencies departs radically from that of a rigid

piston, and other factors often control the radiation efficiency. The use
of a separate unit for the high frequencies is becoming increasingly popular
as a solution to the difficulties inherent in that region (Section 11-17).

11-12 Back of cone completely enclosed. To effectively ensure the
single source type of radiation down to a frequency limit of 50 cycles-sec-1

,

a flat baffle at least 10 feet in diameter is required. A structure of such
dimensions is hardly feasible (or tolerable!) for the average living room.
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To prevent the back wave from interfering with the front wave, one might

try the rather obvious solution of completely enclosing the back of the

loudspeaker in a sound tight box, thus entirely eliminating one component

of the double source. Unfortunately, this procedure has an undesirable

consequence. As we have seen in discussing the Helmholtz resonator,

the air trapped in such an enclosure will behave like a simple spring, at

wavelengths large compared with the box dimensions. The effect upon

the motion of the loudspeaker cone will be to add an elastic stiffness to

the forces already acting upon the

moving system, with a consequent

definite rise in the fundamental

mechanical resonant frequency.

The effect is quite marked, as the

graph of Fig. 11-8 indicates. The

peak in the response for the loud-

speaker when enclosed is about 200

cycles-sec
-1

,
whereas in free air it

is at about 150 cycles-sec-1 . As

will be remembered from Section

5-9, the elastic force due to an en-

closed volume of air, upon a given

area of the container, is inversely

proportional to the volume .
If the

natural cone resonance is placed

very low, say at 30 cycles-sec
-1

,

and if the volume of the enclosure

is large (8 to 10 ft
3

is none too

30 500 30

Frequency in cycles -sec"

(a) (b)

500

Fig. 11-8. Effect upon response character-

istics of complete back enclosure of loud-

speaker. Natural resonance frequency with-

out enclosure is 150 cycles-sec-1
. Enclosure

in (b) is 2 ft X 2 ft X 8 inches. (After

Olsen)

large), the resonant frequency of the combination can be kept close to the

lower limit of usable frequencies. This type of enclosure is sometimes

called an "infinite baffle," although its behavior, due to the stiffness of the

enclosed air, is really quite different from that of a true infinite plane

baffle. ,.«••*
The presence of reflecting surfaces within the enclosure will give rise to

stationary waves at certain frequencies where the wavelength is smaller

than the dimensions of the box. It is usual to line the box with sound

absorbing material to cut down the effect of such resonances upon the

motion of the cone. (Such material has little effect upon the stiffness

loading of the cone at the very low frequencies.)

11-13 Loudspeaker cabinet with open back. In most radio sets de-

signed for the home, the loudspeaker is enclosed in the same cabinet that
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contains the electrical equipment. The cabinet may be small or large,
but it is almost invariably open at the back. This is partly for cooling
purposes and partly to prevent the stiffness effect upon the speaker cone,
as discussed above. Unfortunately, this acoustical system is rather poor!
The air in the open box may resonate in a number of ways, the lowest
frequency of resonance corresponding to a mode of vibration partly of the
Helmholtz type and partly like that for a pipe open at one end only. The
exact frequency of this resonance is difficult to predict, but experimentally
it is found to be in the vicinity of 100-150 cycles-sec"1 for the average con-
sole radio, which is much too high in the audible spectrum. Radiation in
this frequency region is unduly enhanced because of the efficiency of radia-
tion from the open side of the box, which acts like a large piston. Below
this resonant frequency, the acoustic radiation is very poor in the impor-

tant frequency band between 100 and
50 cycles-sec-1 . For small table radio

sets the resonance is even higher, so that

Loudspeaker very little energy is observed below
frequencies of 200 or 300 cycles-sec-1

.

\
Absorbent
material to

minimize
stationary

waves 7
7))>y/////j/7»f//>//>//>/s7&<>

Fig. 11-9. Loudspeaker enclosure
acting as a phase inverter.

11-14 The acoustic phase inverter.*

This device, in its effect upon the low-

frequency radiation of the transducer,

is a considerable improvement over
the ordinary open-backed cabinet. The
phase inverter enclosure is a simple box
which encloses the back of the loud-

speaker but provides an opening which serves to couple the motion of the
air within the box to the outside air. The position of the opening is not
critical, but it is usually placed not far from the speaker cone (Fig
11-9).

The acoustic behavior of the phase inverter can be explained in several
ways. From the standpoint of resonance, the system may be considered
as two closely coupled tuned circuits of a mechanical type. Energy is fed
into the loudspeaker, which constitutes a tuned primary whose separate
resonant frequency is that of the cone-plus-voice coil system (with the
added effect of the acoustic loading at the front of the cone) . This primary
is closely coupled, through the back of the cone, to a secondary comprising
an acoustic oscillator of the Helmholtz type, the enclosed air supplying
the stiffness and a plug of air at the opening furnishing the mass. The

* Dickey, Caulton, and Perry, Radio Engineering 8, No. 2, p. 104 (1936).
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I « •

Frequency

frequency of the Helmholtz resonator is determined by the dimensions

and other factors discussed in Chapter 5. It is usual to tune the "second-

ary" to the same separate frequency as that of the loudspeaker "primary."

Students of electricity will remember

that under these conditions a complete

electrical transformer whose windings

are closely coupled will have an over-

all double resonance, one corresponding

to a frequency higher than theseparate

frequency of the primary or secondary

and the other lower by the same

amount. The two resonances will ap-

pear quite symmetricalwhenmeasured

in the laboratory (Fig. 11-10). Ex-

actly the same double resonance oc-

curs in the case of the speaker and

the air cavity to which it is coupled.

It turns out that a resonance of the

Helmholtz type can occur at a fre-

quency considerably lower than that

for an open-backed cabinet of the same

size. Within limits, the resonant fre-

quency can be controlled by varying the size of the opening; a small

opening gives a lower resonant frequency than a large opening (Section

5-10). The system is damped (due partly to radiation) and the double

resonance gives a bandlike boost to the response (Fig. 11-11).

e

"1

R
c—|pWW-

° i

Fig. 11-10. Behavior of two resonant

circuits with moderately close coupling.

With very close coupling the peaks are

noticeably different in height.

30K

?24

£ 12
Gl

B 6

So 100 500
Frequency in cycles-sec

Fig. 11-11. Typical low frequency response characteristics of loudspeaker mounted

in enclosure of the phase-inverter type.
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The phase inversion feature of the behavior of the enclosure is even more
important than its particular resonance properties, since it accounts for

the radiation efficiency in the low-frequency region. Following is an
approximate analysis of this behavior. Imagine a short neck to be attached

to the opening near the speaker, as in our analysis of Chapter 5. Consider

a steady state simple harmonic vibration of the cone, of a frequency low
enough so that any dimension of the box is much smaller than the wave-
length. Under these conditions, if the cone is displaced inward, the

pressure will build up simultaneously throughout the interior of the box.

There will then be a net outward pressure on the plug of air in the tube.

If we neglect all dissipative forces (in the neck, and due to radiation from
the face of the plug), we may consider the plug to be acted upon only by
the periodic force due to the rise and fall of the pressure within the cavity.

This net force, at the moment under discussion, is outward, and the accel-

eration of the plug is therefore also outward. It will be remembered that

in pure simple harmonic motion there is a 180° relationship between the

acceleration and the displacement. Therefore at the moment being con-

sidered, the displacement will be inward. Since the speaker cone is also

displaced inward, the motions of the cone and of the plug of air are in phase,

and their acoustic radiations will be additive. The opposite is true if both
sides of the cone are exposed to the open air. It is from this effective

phase inversion that the enclosure takes its name.

Just as for all the enclosures we have discussed, the primary improve-

ment in uniformity of radiation properties brought about by the acoustic

phase inverter is at the low frequencies. A partial lining of the interior of

the enclosure prevents undesirable resonances at the higher frequencies.

The phase inversion feature operates only over about two octaves at the

low end of the audible band. Due to the dissipative factors in the neigh-

borhood of the opening, the phase inversion is not the ideal one of 180°

assumed above, since the frictional forces on the plug must be considered,

as well as the elastic force. The phase shift is, however, sufficient to

considerably enhance the over-all radiation in the neighborhood of reso-

nance.

11-15 The half wavelength pipe. Another arrangement designed to

increase the low frequency radiation of a relatively small acoustic piston

depends upon the production of stationary waves in a pipe. In the usual

design, the pipe is coupled to the back of the cone and its length is equal

to A/2 for a frequency in the neighborhood of 100 cycles-sec-1 . At this

frequency the motion of the air at the open end of the pipe is 180° out of

phase with the motion at the back of the cone. Therefore the acoustic
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Absorbing material

radiation from the open end of the pipe is in phase with that from the

front of the cone, and there is enhanced radiation at that frequency. The

inside of the pipe is heavily lined with absorbing material, and this tact,

together with the presence of radiation from the open end of the pipe,

brings about a rather high degree of damping. Hence the resonance is

not sharp. The absorbing material serves also to damp out most ol the

higher resonances; at the middle and higher frequencies the pipe becomes

virtually nonconducting, and practically all of the radiation comes from

the front of the cone. At low frequencies, for which the pipe length

becomes X/4, a different type of resonance occurs. The open end is a

velocity antinode, as for the half-wave resonance, but in this case the wave

reflected from the open end arrives back at the cone out of phase with the

motion of the cone, so that the amplitude of motion of the latter is greatly

reduced at that frequency. In terms of acoustic radiation impedance,

this effect may be described as due to the large impedance offered to the

back of the cone by the air in the pipe. A complete analysis of the pipe

behavior at the quarter wavelength resonance

shows a good fraction. of the acoustic impedance

at the back of the cone to be real and connected

with the radiation of real power from the open end

of the pipe. Since the pipe walls are lined and

introduce additional damping forces, the quarter

wavelength response is fairly broad. The over-all

effect of both half and quarter wavelength reso-

nance is to enhance the low frequency radiation

over a frequency interval of more than an octave,

with no very pronounced peak.

A well-designed loudspeaker has a natural res-

onance frequency at least as low as 50 cycles-sec"1
.

The wavelength corresponding to this frequency is

about 20 feet, and so the pipe is made 5 feet long

to properly damp the cone motion at the quarter

wavelength resonance. Its half wavelength resonance will occur for the

frequency 100 cycles-sec"
1

. Good acoustic radiation will take place over

the approximate range of 50 to 100 cycles-sec"1
. The pipe may be straight

Or may be folded for compactness (Fig. 11-12).

11-16 The use of horns. The essential behavior of a horn was dis-

cussed in Chapter 5. For a long exponential horn with a mouth whose

diameter is somewhat larger than the wavelength, the specific acoustic

impedance at the small end of the horn will be approximately Poc at all

Fig. 11-12. Half wave-

length pipe, or ''acoustic

labyrinth," coupled to

back of cone loudspeaker.
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frequencies, nearly down to the cutoff frequency. There is therefore a

better real acoustic "load" on the driver diaphragm at the lower frequen-

cies when a horn is used than when the loudspeaker unit is a simple direct

radiator surrounded by a flat baffle. It is not so necessary to depend upon
cone resonance at these lower frequencies. The use of a horn always

increases the efficiency of any practical transducer at the lower frequencies,

since the open end of the horn, the effective radiating area, can be enor-

mously larger than any practical equivalent of an acoustic piston. The
horn must be bulky to be effective at the low frequencies, and hence is not

suited to home use.

11-17 High frequency radiation problems. Multiple loudspeakers.

Most of our discussion thus far has centered around the problem of ob-

taining good low frequency acoustic radiation. As pointed out in Sec-

tion 11-10, no light paper cone with a diameter as large as 6 to 12 inches

can behave as an acoustic piston above a frequency of several hundred
cycles because of cone breakup. For cones of small diameter, the breakup
occurs at the higher frequencies, but as was seen in Section 5-20, it is

desirable to have the cone as large as possible to obtain good acoustic

loading at the low frequencies. The obvious solution to the problem is to

use at least two separate acoustic radiators, one designed for the low

frequency range and the other for the middle and
high frequency ranges, each unit being electrically

supplied with the proper fraction of the whole

spectrum of frequencies. The use of a small dia-

phragm for the higher frequency radiator has more
than one advantage. Besides remaining more
rigid at higher frequencies, with a consequent

smoother acoustic pressure response, a small dia-

phragm will set up a more diffuse diffraction

pattern (at the sacrifice, of course, of some effi-

ciency). A large diaphragm, however efficient a

radiator it may be at the higher frequencies, will

unfortunately radiate energy in that frequency

region as a beam, and not with the spherical

divergence desirable for a distributed listening

audience. With a reduction in piston diameter the diffraction pattern, it

will be remembered, will spread out. To diffuse the energy still more

effectively at the very high frequencies, where even the small diaphragm

of the high frequency unit (perhaps several inches in diameter) will radiate

within a small solid angle, a cluster of small horns may be coupled to the

diaphragm (Fig. 11-13).

Fig. 11-13. Horn clus-

ter designed to increase

divergence of radiation

from high frequency unit

in multiple speaker sys-

tems.
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Due to the special problems associated with the design of units which

will radiate efficiently above 5000 cycles-sec"1
,
there is some argument for

dividing the complete band of audible frequencies among three loudspeaker

units A triple unit radiator of this type is illustrated in Fig. 11-14. The

radiator for the middle frequencies, the range from 600 to 4000 cycles-sec \

is not visible in the photograph. The middle frequencies emerge from a

Fig. 11-14. Three-channel loudspeaker. (Courtesy Jensen Mfg. Co.)

short horn whose mouth opening is at the center of the large paper cone

(the low frequency radiating surface). The surface of the cone is a con-

tinuation of the horn contour and helps to couple the middle frequency

unit to the air.
m

In multiple units of the dual or triple type, electrical networks are

necessary to sort out the several groups of frequencies. This is a standard

electrical filter problem whose solution is relatively simple. One phase ot

the acoustical problem not yet completely solved arises from the fact that

the several units are not coincident in space, so that interference effects

may be observed in the frequency region of crossover (where two units are

radiating simultaneously). The coaxial geometry minimizes this diffi-

culty.
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11-18 Effect of room resonances. As will now be realized, there are
complications enough in the design of an aperiodic acoustical radiator if

the transducer is assumed to be radiating into free space. The conclusions
reached in the above sections are valid only if the energy radiated from the
loudspeaker diaphragm travels indefinitely outward and never encounters

500 1000 2000 10,000 20,000

Frequency in cycles-sec '

«,-
Fl(

T
11_15

- Variation in the measured response of a single loudspeaker located in a
live" room, depending on the position of the microphone, M. (Based on Technical

Monograph #1, Jensen Mfg. Co.)

any reflecting surface. However, electroacoustic equipment is more often
than not used indoors and in small rooms. If the rms pressure is measured
along the axis of a cone radiator, either outdoors (true free space) or in a
good anechoic room, one obtains the type of response discussed so far in
this chapter. If the same measurements are made in an ordinary living
room with partially reflecting walls, the response curve (acoustic pressure
vs frequency) may be entirely different in all but the most essential rough
features. The curve taken indoors will have many additional resonances
which are due to stationary waves set up within the room. The location
of the microphone, that is, whether it is at a pressure node or an antinode
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for each of the many wave patterns, will greatly affect the magnitude of

the measured acoustic pressure (Fig. 11-15).
,. ... , otio

This does not mean that the general radiation properties of the trans-

ducer, as determined on the basis of free-space measurements, are not

important, but it does mean that the room acoustics significantly alter the

behavior as far as the ear is concerned. To the ear, the low frequency

response is somewhat more pronounced within an enclosure like a room

than it is outdoors, since the energy is confined and reflected back and forth

XJ

"^ +l°r

8 -10

a,

.1-20

<X-3 l

50 100 200 500 1000 2000 5000 10,000 20,000

Frequency in cycles-sec

Fig. U-16. Typical measured response of loudspeaker in "live" room. Smooth

line represents the effect to the average ear.

within a limited volume, rather than spread into regions beyond the lis-

tener (This spread is most pronounced at the low frequencies, because ot

diffraction.) Despite room peculiarities, however, it is still true that in the

confines of a room a good wide-range transducer will sound better than one

of narrow range.

11-19 Electrical equalization circuits. It is not within the scope of this

book to discuss the important electronic circuits which are a part of every

complete sound reproducing system. Mention must be made, however,

of the possibility of correction for deficiencies in the acoustic part of the

system by the deliberate introduction of "controlled distortion into the

electrical circuits. The graph of frequency vs sound pressure m front of

any actual loudspeaker is a highly irregular curve of the type indicated by

the solid line of Fig. U-16; the general trend of the graph is represented by

the smoother curve. (As a matter of fact, the average uncritical listener

will picture the curve as somewhat like this anyway, since, as we have

noted elsewhere, the ear is insensitive to rather large variations ,n sound

pressure, particularly in the presence of a mixture of frequencies. To the

human ear, the transducer will always sound better than the objective

measurement with a laboratory microphone would indicate.)
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Frequency

(d)

v s

By the introduction of so-called equalizing circuits into the electronic
amplifier that feeds the energy to the loudspeaker, it is possible to give to
the entire system a response virtually independent of frequency, even
though the curve for the transducer has a decided " droop" at both the
high and the low frequency ends of the spectrum (Fig. ll-17a). All that
is necessary is to electronically amplify both the high and the low fre-

quencies more than the middle fre-

quencies. An amplifier with such a
discrimination circuit will show a gain

which varies with frequency in the

manner indicated by curve (b) of Fig.

11-17. To the ear, the over-all effect

will be somewhat like that given by
the product of curve (a) and curve (b),

that is, as shown by curve (c). In a
sense, one distortion has cancelled an-

other. The correction principle is es-

sentially the same as that used to

overcome the radiation deficiencies of

an acoustic piston; we employ ahead
of the acoustic radiation, it will be re-

membered, a type of mechanical velo-

city response which is high at those

frequencies where the acoustic radia-

tion is low.

It is not good practice to employ
any more electrical equalization than
is absolutely necessary, since there is

some danger of overloading (with re-

sultant distortion) both the electronic

circuits and the mechanical trans-

ducer system. Moreover, only gross defects in uniformity of response on
the part of the transducer and its acoustic radiation can be corrected in

this manner. No reasonably simple circuit has been devised to remove the

numerous peaks and valleys due to cone breakup. These latter eccen-

tricities in cone behavior can only be minimized by careful design of the

mechanical features of the transducer itself and hence it is still desirable to

design the transducer to be as aperiodic as possible.

Frequency

(b)

° Frequency

(C)

Fig. 11-17. Use of electrical compen-
sation to correct for acoustical short-
comings.

11-20 Transducers for disk phonograph records. There are several

methods whereby the vibrations associated with sound waves can be trans-
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ferred to a permanent record. Three different media and techniques have

been widely used: ordinary flat disk pressing, based on the principles oi

the early Edison phonograph, the film sound track technique, and the

recently revived use of magnetic tape. Each system has its special prob-

lems none of which is fundamentally acoustic in nature although, since the

vibrations are due originally to sound waves, acoustics inevitably enters

into the larger problem.

In the system enjoying the widest popular use, that employing a flat

grooved disk, it is necessary to use an electromechanical transducer (com-

monly known as the phonograph pickup) between the record and the

electrical amplifier that drives the loudspeaker. It is this device that

transforms the motion of the needle, resting in the undulating record groove,

into an equivalent alternating potential. Such a potential can be ampli-

fied electronically and eventually applied to the terminals of a loudspeaker.

The design of this transducer involves no acoustic principles. The moving

mechanical system, however, is similar in some respects to that used m

certain microphones and loudspeakers. This system has a mechanical

impedance that varies with the frequency, a variation which plays an

important part in the behavior of the phonograph transducer^ Since we

have paid some attention to the effect of the mechanical impedance of the

ioudsjeaker, it will be interesting to describe briefly the phonograph

pickup mechanism, with particular attention to the mechanical impedance

of its moving parts. , ,

Many different kinds of phonograph pickups have been proposed and

manufactured. Practically all electromechanical transducers are revers-

ible, and can be used either as motors or generators. The most popular

types are three in number, the variable relvrtarxe pickup the eUctrodynarmc

pLkup and the piezoelectric pickup. The variable reluctance pickup is

really a telephone receiver of the reed type used backwards as a generator.

The vibrating needle is attached to a small iron armature whose motion

varies the length of the air gap in a magnetic circuit A coil placed some-

where in the circuit thus receives a variable magnetic flux and experiences

an induced emf of the same frequency as that of the needle vibration. The

electrodynamic pickup is similar to an electrodynamic microphone except

that the motion of the coil is due to the motion of the needle rather than

to sound pressure. In the piezoelectric or crystal pickup the needle

motion deforms a crystal having piezoelectric properties. (The deforma-

tion is usually a torsion.)

11-21 Differences in transfer behavior. The three types of transducers

discussed above do not all behave alike in their electrical responses to a
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given motion of the needle. Both the variable reluctance and the electro-
dynamic pickups give an output voltage which is proportional to the maxi-
mum velocity of the needle (actually an angular velocity, since the needle-
holding mechanism is free to rotate around a pivot). On the other hand,
the piezoelectric transducer gives an output voltage proportional to the
maximum displacement of the needle. These differences in behavior are
important because of the manner in which the grooves are cut into the
phonograph record. If one examines the record groove with a microscope,
he will find that for a pure sinusoidal musical note the position of the center
of the groove varies from side to side of the mean position in the manner
of an ordinary sine curve. Since the angular frequency of the record on
the turntable is constant, the crests of the sine curve will be close for the
high frequencies and farther apart for the low frequencies. (The relation-
ship between this spacing and the frequency is obviously not constant for
different radii of the disk.)

Over most of the audible frequency range the modulation amplitude is

so determined that for a given intensity of the original sound the maximum
velocity imparted to the pickup needle is approximately the same, regardless
of the frequency. Therefore for frequencies for which this is so, the vari-
able reluctance and electrodynamic pickups will faithfully reproduce the
original intensity distribution among the various frequencies. The crystal
pickup, however, will give a smaller and smaller electrical output with
rises in frequency since, with a constant velocity characteristic, the ampli-
tude of the undulations decreases with frequency rise (from simple harmonic
motion, x = x/2irf). Below about 400 cycles-sec"1 the groove motion has
a constant amplitude characteristic to prevent cutting into the next groove.
Hence below this frequency the crystal pickup will respond properly, while
the other two types will give reduced output with drops in frequency.
Both kinds of response are easily corrected with electrical equalizing cir-

cuits, so that the final sound closely simulates the original.

11-22 Mechanical impedance of moving parts. Tracking. For the
motion of the needle to faithfully follow the record groove, it must obviously
remain in the groove. Whether it will or not depends on the mechanical
impedance of the moving system in relation to the driving force. We may
idealize the system and replace it with an equivalent particle resting in the
groove under the action of an elastic restraining force, the latter being
actually supplied by an elastic torque at the pivot, farther up (see Fig. 11-18
for the equivalence). The equivalent particle has mass and there is also a
dissipative force due to the pivot construction, although this force is

usually small. The force driving this equivalent particle during the
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motion of the record is due to the side wall of the record groove
;
the undula-

tions of the groove move the particle back and forth horizontally in the

plane of the paper.

A simple consideration of Newton's second law will show that any dis-

placement of the groove position may cause the particle to ride up the

Elastic torque

at pivot x Bearing friction

Needle-
Record groove

---•W-—

Particle • Spring

Friction

Record groove

(a)
(b)

Essential mechanical system in a phonograph transducer or""P"^
representation of rotating needle system, (b) Equivalent particle

52£^^3

Fig. 11-18.

(a) Simplified

system.

wall of the groove, which is inclined at approximately 45°. To prevent

this effect, a vertical force is necessary, and the weight of the pickup arm

usually supplies this force. In the interests of long need e and record life

it is highly desirable to keep this vertical force low, and therefore to keep

low the driving force supplied by the sides of the record groove, lo

accomplish this it is necessary to keep

the mechanical impedance of the mov-

ing system in the transducer at a mini-

mum.
Assuming a steady state periodic

motion of the needle, the vector force

relationship for the equivalent particle

is shown in Fig. 11-19, at the critical

situation where the needle point is

about to slide up the groove wall. Here

W is the force due to the weight of

the arm, F is the force supplied by the

smooth groove wall, and zmx is the

magnitude of the " reversed effective'

'

force due to the mechanical impedance

zm of the particle system, whose velocity

is x. (This last vector arises from

Fdriv = zmx, where FdTw is the horizontal

*-zm x

Fig. 11-19. Vector relationship for

needle about to be forced out of groove.
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component of F and constitutes the driving force.) Due to the 45°
slope of the wall, it may be seen by resolving W and zmx along the direc-

tion of the wall slope that W must be at least

as great as the vector zmx for the needle to

remain in the groove.

It is usual to place the mechanical resonance
of the moving system at about the middle of

the frequency spectrum. The mechanical im-
pedance zm will be a minimum at that fre-

quency and will rise at lower and at higher

frequencies. If we assume constant velocity

properties for the groove undulation, a plot

of zmx (and therefore the driving force) vs
frequency will look something like the graph
of Fig. 11-20. Since the vertical force W
must at all frequencies be at least as great as

zmx, it must obviously be designed to take care
of the greatest recorded value of x (about 5 cm-sec-1 for 78 rpm recordings)
at the ends of the frequency spectrum, where zm is a maximum. If zm is

known at those points, the required value of W is determined, once the
characteristics of the recording technique are known.
By the introduction of numerous refinements in the mechanical por-

tions of the phonograph pickup it has been possible to reduce the maximum
value of zm (at very low and at very high frequencies) to an extremely low
value, so that the minimum "tracking force" (that is, W) is often as low
as 5000 dynes (close to 5 gm in weight). The result is a much longer
record and needle life than formerly, when units of much higher mechanical
impedance were employed. It should be pointed out that the motion of
the needle end is controlled in amplitude by the presence of the groove wall.
No unnatural electrical response takes place at the frequency of mechanical
resonance. The variations that occur affect the wall-needle point force
only.

Frequency

Fig. 11-20. Driving force

supplied by record groove wall
as a function of frequency.
Constant needle point velocity
is assumed.

11-23 Conclusion. With this illustration of one more application of
the principle of electrical analogy, we shall close this chapter on the repro-
duction of sound. There are many other aspects and details of this branch
of applied acoustics which have not been covered in this brief summary.
For further information the reader is referred to the many articles appearing
in the current journals, as well as to the specialized books on the engineering
aspects of sound.
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PROBLEMS

1. Consider a loudspeaker mechanism

of the electromagnetic type, in which the

electrical losses in the voice coil due to

heating effects are negligible. The cone

of diameter 10 inches, behaves as a rigid

acoustic piston radiating plane waves.

The internal mechanical damping constant

is 1.5 X 104 dynes-cm
-1

-sec. (a) What is the

efficiency of the loudspeaker as a radiator

of sound waves? (b) What would be the

efficiency for a cone of one-half this diam-

eter, still assuming plane wave radiation

and the same value for the internal damp-

ing constant?

2. The moving parts of a loudspeaker

mechanism have a mechanical impedance

which is at all times large compared with

the impedance due to the air load. The

resonant frequency is 60 cycles-sec K

(a) Plot an approximate curve for fre-

quencies above resonance to show the

variation of the velocity x with the fre-

quency, assuming a constant driving force.

(b) Assuming the cone to act as an

acoustic piston of constant diameter,

radiating plane waves, plot an approxi-

mate graph to show the relationship

between total radiated power and the

frequency.

3. A loudspeaker, whose cone has a

diameter of 12 inches, has an internal

mechanical impedance which is mainly

resistive and which is always large com-

pared with the impedance due to the air

load. The cone is surrounded by a very

large flat baffle, (a) Making use of the

graph of Fig. 5-11, plot an approximate

graph of the total radiated power vs the

frequency, assuming a constant driving

force, (b) Is this loudspeaker arrange-

ment ideal? If there are any disadvan-

tages, discuss them.

4. It is desired to radiate maximum
acoustic power with a cone-type loud-

speaker at a single fixed frequency of 1000

cycles-sec
-1

. Discuss the design features

of the loudspeaker from the standpoint of

(a) the size of the cone, (b) the resonant

frequency, and (c) the value of the real

and imaginary components of the mechani-

cal impedance zm .

5. Compute the rms driving force for

an electrostatic loudspeaker (see Section

11-4) of diameter 10 inches where Eo is

1000 volts, d is 5 mm, and the maximum

value of the signal voltage e is 50 volts.

6. A paper cone may sometimes

generate sound waves which are sub-

harmonics of the applied sinusoidal volt-

age, that is, the frequencies are less than

that of the signal. This is due to flexure

along the elements of the cone, under the

action of the axial force at the apex.

Paper cones molded so as to have a

contour somewhat like that of an expo-

nential horn do not exhibit this property.

Explain how this shape eliminates the

danger of such subharmonics.

7. Making use of Eq. (11-13), derive

an expression for the motional impedance

zem in the form a + jb.

8. From the form of the equation

obtained in problem 7, discuss in detail

the effect upon zem of varying the frequency

of the voltage applied to an ideal acoustic

piston mounted in an infinite baffle.

9. Assume an acoustic piston to be

radiating plane waves. Its effective mass

is 2 gm, the elastic factor K is 3 X 108

dynes-cm-1 , and the damping coefficient r

is 200 dynes-cm-1-sec. (a) Find its reso-

nant frequency, neglecting the effect of the

air. (b) Find, at the resonant frequency,

the value of the motional impedance zem

if the diameter of the cone is 10 inches.

The voice coil has a diameter of one inch

and consists of 60 turns. It lies in a

magnetic field where the flux density B
has a value of 8000 gauss, (c) How, in

general, will the resonant frequency be

affected by the presence of the air?

10. Compute the over-all efficiency, at

the resonant frequency, of the loudspeaker

described in problem 9. The voice coil

has a blocked electrical resistance of 3

ohms.

11. The diameter of the effective

radiating area of the cone of a certain
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loudspeaker is reduced to one-half when both cases, what will be the relative acous-
the frequency of the applied signal is tic power output in the two cases with
raised from 1000 to 2000 cycles-sec"1

. (a) constant cone velocity, and (b) con-
Assuming the radiation of plane waves in stant cone amplitude?



CHAPTER 12

MISCELLANEOUS APPLIED ACOUSTICS

12-1 The acoustic properties of rooms. One of the earliest branches of

applied acoustics to receive serious theoretical and experimental attention

was that concerned with the acoustic properties of rooms. Because of the

reflecting power of the average wall surface, at least part of the acoustic

energy reaching the walls is returned to the room. Hence the whole nature

of the energy distribution around a source located withm a room is quite

different from that around the same source in free space.

The most obvious result of the reflections at the walls will be what is

usually called reverberation. When the vibrations of a sound source withm

the room are stopped, so that the influx of energy is cut off, the acoustic

energy does not instantly become zero throughout the room. At the in-

stant the source is cut off there is a flow of wave energy in the room along

a large number of assorted paths, with numerous reflections at the wall

surfaces This flow continues after the source is stopped, the energy den-

sity in the room diminishing rapidly as each reflection extracts a fraction

of the energy in the incident wave. With such a process, one would

expect some kind of exponential decay of the acoustic energy withm the

room When the energy has reached a low level, the sound becomes inau-

dible This whole phenomenon of decay is called reverberation.

The reflecting properties of a room are both advantageous and detri-

mental. With a steady source of sound, the extraction of energy at the

walls is proceeding at a steady rate. Indeed, if the observed intensity of

the sound remains constant, the total energy leaving per second through

wall absorption must then equal the energy fed into the room per second

by the source. This intensity, when measured at any one point, will be

found to be much greater than would be expected at that distance from

the source in free space. The presence of reflected energy thus greatly

increases the efficiency of sound transmission to the hearer Even m large

halls, a speaker can be heard from any position, even at the extreme rear,

whereas communication over such distances is usually difficult m the open.

Not only does the existence of reflection make possible a more effective

steady state sound transmission, but from the transient point of view a

certain amount of reverberation or "acoustic hangover" is apparently

agreeable to the ear, particularly for music. Too abrupt a cessation of

the various sounds in orchestral music is considered to detract from the

smooth blending of the sound from the different instruments. Some of

291
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this effect is no doubt due to psychological conditioning on the part of the
listener, since most music has in the past been played in highly reverberant
rooms.

The detrimental aspect of reflection is also important, particularly if

the room is to be used by a speaker. If the energies associated with con-
secutive sounds overlap at the ear of the listener to too great an extent,
because of reverberation, speech loses clarity and the articulation score is

low. Even in music there results an unpleasant blurring, often amounting
to a discordant effect.

From the above discussion it is apparent that there must be an optimum
degree of reverberation for which the room and its wall surfaces should be
designed. To reach some definite conclusions as to the proper acoustic
design of rooms in general, we shall discuss first a room having certain
ideal properties.

12-2 An ideal reverberant room. Let us consider a large room whose
walls absorb only a small fraction of the incident energy with each reflection.

If the mean path between reflections is long and if the walls are highly
reflecting, any wave motion started within the room will persist for a rela-

tively long time after the source is stopped. The room is then called
acoustically "live." Also, when the source is first started it will take a
relatively long time, as we shall see, before a steady state is reached, that
is, an instant when the total rate of disappearance of energy at the walls is

equal to the total rate of influx of energy from the source. If the wave-
lengths are small compared with any room dimension (and if the room is

irregular in shape), the wave energy will be distributed quite uniformly.
As a result, the effect of stationary wave patterns will be small and may
be ignored. It will be correct to say that in such a room the energy asso-

ciated with the sound is at any one instant distributed uniformly throughout
the volume of the room. With the situation as described, the energy density
everywhere in the room will go up or down at the same rate during those
transient periods of relatively slow change when the energy is either in-

creasing towards the equilibrium steady state level, or decreasing towards
the zero level.

12-3 Rate of disappearance of energy from the ideal reverberant room.
The uniform distribution of energy assumed above implies that all possible
directions of flow are represented at any one point, distributed in a com-
pletely random manner. This means that a velocity microphone, at any
one instant, would give the same response regardless of its orientation.

(This ideal state of affairs assumes no significant stationary wave patterns.)

For the same reason, the total incident energy striking any given wall area
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per unit time will be uniform regardless of location. With this in mind,

it is not difficult to compute the total rate of arrival of energy per unit

area of wall surface from all directions in terms of the instantaneous energy

density e { . The Sabine absorption coefficient «., it will be recalled, assumes

energy arriving from all possible directions, and under these conditions repre-

sents the ratio of absorbed to incident energy. Therefore a fraction a. of

the energy incident per unit time will disappear from the room. Knowing

the total surface area, it is then a simple matter to determine the total time

rate of disappearance of energy over the surfaces of all the walls. Details

of the above analysis are given in Appendix IV; the theory is due to Sabine

and Jaeger. The equation for the energy u arriving per unit area of wall

surface per unit time is

u = f

,

(12-D

where a is the instantaneous acoustic energy density in the room and c is

the velocity of sound. The total energy Ua absorbed per unit tune over

the total wall surface S will be

Ua =
6

-f
aA (12-2)

where a8 is the mean value of the Sabine absorption coefficient for all the

surfaces. As would be expected, Ua is proportional to the energy density

and to the surface area of the room. The total energy Ua is also linearly

dependent upon the velocity of sound, since the higher the velocity, the

more frequent will be the reflections. The factor 4 is a result of the inte-

gration necessary to obtain Eq. (12-1).

If the value of aa varies for different portions of the wall surface, which

is usually the case, Eq. (12-2) may be written

Ua =
e

-f^(« sS). (12-3)

In this case the wall surfaces are broken up into finite areas, over any one

of which the value of as is constant. The summation in Eq. (12-3) is

then performed over the whole room surface, and we obtain

2 (<*sS) = (as)iSi + (a.)a& ' • ' MnSn.

12-4 The steady state energy density. In the steady state, reached in

actual rooms soon after the starting of a steady source of sound, the total

energy U entering the room per second is equal to the total energy Ua leav-

ing the room per second. Making use of Eq. (12-1), therefore,

tr-^a^-O, (12-4)
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where e is the steady state energy density and as is the average absorp-
tion coefficient. Solving for e Q, we obtain

W
eo = -=-«• (12-5)

Caso

It is important not to confuse the energy density e as used in discussing

room properties with the energy density concept introduced in the chapters

on progressive, unidirectional waves, either plane or spherical. In the

case of free space waves, the energy enters and leaves any given small

volume of space along one fixed direction. In the room now being con-

sidered there is a simultaneous flow of energy in all possible directions, and
because of this random directional distribution the intensity of the sound
is not the product of the energy density and the sound velocity c, as it is for

unidirectional flow. The correct relationship between the energy density

and the sound intensity in the reverberant room (defined, as for uni-

directional waves, as the energy flow in a given direction through unit area

per unit time) is given by Eq. (12-1). This expression, while used for

energy incident at the wall, is equally valid for an imaginary surface out in

the room. Therefore the steady state sound intensity 7 anywhere in our
ideal reverberant room is, in view of Eqs. (12-1) and (12-5),

12-5 The transient equations. During the time that the acoustic

energy is building up to the steady state condition, the flow of energy into

the room from the source is greater than the flow out through the walls.

If V is the volume of the room, the total rate of increase in the acoustic

energy in the room during this transient period is V(dei/dt). Equating
this rate of increase to the difference between the rate of influx and the

rate of efflux, we may write, using Eq. (12-2),

This equation may be rearranged:

Ff + f^=C/. (12-7)

This is the differential equation which describes how the energy density e<

varies with the time while the source is feeding in energy at the constant

rate U. It will be recognized as identical in form with the differential
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equation which describes the variation in the current in an L-R circuit

upon which has been impressed a constant emf, E, that is,

L di + Ri = E. (12-8)

dt

The integration of this electrical equation gives

K

By analogy, the expression for the acoustic energy density as a function of

the time must be given by

e = &L ^ _ -[(casS)/4V]ty (12-9)

ca8S

We may simplify Eq. (12-9) by making use of Eq. (12-5)

:

ei = e.(l - ,-k^^"). (12-10)

The energy density e. is plainly the final steady state value which «

approaches asymptotically with the time.
_

For the transient period after the sound source is turned off, U in

Eq. (12-7) is zero. The proper differential equation is then

7*! +^8 - 0. (12-11)

This equation is analogous to the differential equation for the current in an

L-R circuit after the removal of the emf. The electrical equation is then

similar to Eq. (12-8), but with the right-hand side equal to zero, lne

integration of this equation yields

= E
e
-wm

1 R

and the analogous equation for e { is therefore

„ _ ML e-l(cas
s)/*vv (12-12)

Ci — — Q e

or
gi = ea

_lm,suiv«_ (12-13)

Since the sound intensity in the room is equal to w/4 and therefore pro-

portional to e<, Eqs. (12-10) and (12-13) may be written m terms of the

intensities, where h replaces e< and Jo replaces c„. We then have for the

rise in intensity,

^ =^ _ ^wo/*^ (12-14)

and for the decay, _, .wm (12-15)
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12-6 Reverberation time. Graphs of Eqs. (12-10) and (12-13) are
given in Fig. 12-1. The time required for e» to reach the steady state

value in the one case, or the zero value
in the other, is obviously infinite. The
ear, however, will judge these limits to

have been reached in a finite time. The
length of time required for the acoustic

energy density to drop to some fixed frac-

tion of its initial steady state value after

the sound is turned off is a convenient

measure of the importance of the tran-

sient period to the ear. This reverbera-

tion time, Tr, is defined as the length of

time required for the energy density to de-

crease to one millionth of its initial value.

Such a decrease corresponds to a drop of

60 db in intensity. For a sound whose
initial intensity level is just 60 db, as

referred to the standard zero level (which

is near the average threshold of hearing),

the reverberation time then corresponds

to the actual time duration of the sound
for the average ear.

If we set e { equal to 10~6e in Eq. (12-13) and solve for the corresponding
time t - Tr, we find

Time,t

Decay in energy density

offer source is stopped

Time,t

Fig. 12-1. Variation in energy
density in ideal reverberant room.

Tr =
47
CasS

loge 10
6

. (12-16)

Room volumes and surfaces are usually measured in cubic feet and square
feet respectively. Using these units and expressing the velocity of sound
in air in ft-sec

-1
, we may write for Eq. (12-16),

Tr = 0.049^ sec,
V_

(12-17)

where a8 is the mean value of the Sabine absorption coefficient for all the
wall surfaces. For rooms whose walls have variable absorption properties,

this becomes

Tr = 0.049 sec. (12-18)

2 («£)

There has been considerable discussion as to the optimum value of the
reverberation time. There must obviously be a compromise, because of
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the conflict between acoustic efficiency and clarity of speech and music.

Experience indicates that a reverberation time of 1 or 2 seconds is desirable

for purposes of speech, the longer time being allowable in large halls in

the interests of efficiency of sound diffusion. For music more hangover

time is permissible and, as mentioned earlier, may be desirable on aesthetic

grounds.

12-7 Partially live rooms. Only large, highly reverberant auditoriums

approach the behavior of the ideal room whose reverberation time is given

bv Eq (12-18) A somewhat different point of view as to the process ot

sound absorption by the room walls has been presented by Norris*and

Eyring t According to this theory, there is a series of discontinuous drops

in energy with each reflection, rather than the continuous disappearance

visualized in the theory of Sabine and Jaeger. The equation for the

decay in energy density becomes, by this theory,

e . = eQe
icsiogea-ss)/4V]t

m
(12-19)

The algebraic sign of the exponent is intrinsically negative, since a. is

always less than unity and log, (1 - a.) is therefore always negative. The

expression for the reverberation time becomes

T _ o 049 -, r (12
"2°)

Equation (12-18) may lead to errors of 20-30% in rooms whose rever-

beration time is less than 3 seconds. In these cases Eq. (12-20) is in better

agreement with experiment.

A further modification of Eq. (12-20), proposed by Millmgton and Sette,

may be applied to rooms where one large surface is much more highly ab-

sorbent than another. This leads to somewhat better agreement with

experiment than Eq. (12-20), whose derivation depends on the properties

of all the walls being fairly uniform.

12-8 Determination of a5 . In Chapter 8 the Sabine absorption coeffi-

cient was defined as the ratio of absorbed to incident energy, assuming a

completely random distribution of incident angles. Since this is also

assumed in the theories just discussed, we may use Eq. 12-17) or (12-20)

to compute the average absorption coefficient a., once Tr has been measured

experimentally. Equation (12-17) is suitable for large auditoriums whose

*Norris, Appendix II, Architectural Acoustics by V. O. Knudsen, John Wiley &

Sons (1932).

t Eyring, Jour. Acous. Soc. Amer. 1, 217 (1930).
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walls are highly reflecting, and Eq. (12-20) is better for smaller rooms
having walls of higher absorbing power. The determination of Tr is a
simple matter, once an oscillograph or similar record of the sound pressure

as a function of decay time has been made. For a number of reasons to be
discussed presently, the experimental curves are rarely the smooth ones
predicted by theory. The rate of decay is usually approximately expo-
nential, however, and the curves can be used to determine a 8 with fair pre-

cision.

12-9 Effect of varying frequency. As is indicated in Table 8-1, the
value of as for any one type of surface is a function of the frequency,

because of the nature of the acoustic impedance at the surface. Accord-
ingly, as would be expected, the reverberation time obtained for a given
type of wall surface will depend on the frequency used. In view of the

broad band character of speech and music, it is desirable to average the

reverberation time over a band of frequencies. Several methods are used,

such as multitoned generators, " white noise" generators, and the modula-
tion of the frequency of a " warbled" tone at a rate rapid compared with
the decay time. For speech, the middle and higher frequencies are the
important ones, as has been pointed out in Chapter 9. Hence it is bene-
ficial to have a high value of a s for the low frequencies, whose reverberation

tends to mask the higher frequencies essential to articulation. Under these

conditions it is more useful to measure Tr for a series of rather narrow bands
of frequencies than to obtain a single average value for the whole audible

spectrum.

12-10 Absorbing surfaces of limited area. No practical room or

auditorium has surfaces all of uniform absorbing properties. The usual
procedure is to place material of high absorbing power on certain limited

portions of the wall area in order to achieve the desired value for the over-

all absorption coefficient. If the value of as for each portion of the wall

surface can be determined, an equation in the form of Eq. (12-18) can be
used to predict the reverberation time. To determine the effective value
of aa for a pioce of material of restricted area, the sample is introduced into

a "live" chamber whose normal reverberation time Tr is known. If the

reverberation time is again measured after the introduction of the sample,
it is an easy matter to compute the value of as for the material, in terms
of the reverberation times, the area of the sample, and the total surface

area of the room.* (Because of diffraction effects at the edges of an absorb-

* See Beranek, Acoustic Measurements, p. 863.
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ing panel of limited dimensions, the absorption coefficient of a small piece

of material will be less than for a larger piece. The size of the sample

should be large enough to minimize diffraction effects.)

12-11 Computation of as from zn. In Chapter 8 it was pointed out

that the coefficient of absorption an for normal incidence is directly related

to the normal specific acoustic impedance zn at the absorbing surface

There are several methods for the measurement of the absorption coefficient

(or the related quantity, the specific acoustic impedance) as a function of the

incident angle.* Once these measurements have

been made, the Sabine absorption coefficient can

be computed from the following expression:

as -sf*jf
72

ae cos 6 dd, (12-21)

where a9 is the absorption coefficient for the

incident angle 0, and * is the azimuth coordi-

nate angle whose variation takes care of all

possible directions of energy arrival. Because

of the indirect nature of this method of com-

puting the Sabine coefficient, the direct meas-

urement of reverberation time is still the

method most commonly used.

12-12 Effect of room resonances. Steady

state. In actual rectangular rooms with walls

which are good reflectors, there is rarely the

uniform energy distribution so far assumed,

even during the steady state phase. This non-

uniformity is due at least in part to the presence

of stationary waves, always a possibility in a

medium of limited extent. The presence of

such patterns along directions perpendicular to

a pair of opposite walls is to be expected, but

stationary waves may occur because of waves

traveling in many other directions. Several

such paths are indicated in Fig. 12-2. If a

musical sound constituting a harmonic series is radiating into the room,

the modes of vibration in the room that happen to coincide with the

Fig. 12-2. Paths associ-

ated with four of the normal

modes of vibration of a rec-

tangular room. The exciting

source is labeled s.

* See Beranek, Acoustic Measurements, pp. 864 and 867.
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frequency components present in the sound source will be excited through
resonance. As a consequence, there will be an uneven distribution of
acoustic pressure due to the existence of numerous nodes and antinodes,
which accounts for many of the irregularities observed in the radiation
from a radio loudspeaker as the microphone is moved from one point in the
room to another.

12-13 Normal modes of vibration. The transient period. As men-
tioned in Section 12-8, the experimental decay curves for room reverbera-
tion are never smooth. The irregularity may be considerable, as indicated
by Fig. 12-3. Some of this irregularity is due to the different decay times
associated with the nonuniform energy distribution which always exists to
some extent. If there is not complete and rapid sound diffusion, highly

»; absorbent wall surfaces may remove en-

ergy in their vicinities more rapidly than
do other less absorbent surfaces. An-
other source of irregularity is the variation

of as with the frequency, when the source

is radiating a mixture of frequencies.

Perhaps the most important cause of

the fluctuations observed in the decay
curves is the existence of the room res-

onance referred to in the previous sec-

tion. The room may be considered as a
system capable of many natural frequen-

cies of oscillation. When the sound
source is turned off, the behavior of the
room is similar to that of any other sys-

tem after the driving force is removed:
the room "oscillator" enters a period of

transient motion, executing those frequencies of vibration associated with
the various stationary wave patterns, just as in the case of a stretched
string. As in the case of a plucked string, the modes that appear will be
consistent with the particular initial conditions at the time the sound
source is stopped. So numerous are the various modes of vibration asso-

ciated with the wide variety of possible paths of reflection that many such
frequencies are close enough together to produce beats. It is the beat
effect between such pairs of frequencies that accounts formany of the fluctua-
tions of sound pressure with time picked up by the recording microphone.

It is possible, with rooms of such simple geometrical shape as the
rectangle or the cylinder, to develop a mathematical technique whereby

Time,t

Fig. 12-3. Typical variation of

acoustic pressure with the time dur-
ing the decay period. Many modes
of room vibration are present.
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the various normal modes of vibration of the room can be determined

Vibration and. Sound by Morse gives full details of this analysis. One of

the interesting results of a study of room reverberation is that in a room

of highly irregular shape the number of normal modes of vibration that

lie within any one narrow frequency range (often called "bunching )
is

much reduced. Hence the chance of any considerable energy being

associated with the beat effect referred to above is much lessened. For

the same reasons, such rooms show less annoying resonance during the

steady state period. These general advantages of irregularly shaped

rooms have been known empirically for many years.

12-14 Transmission of wave energy through partitions. There are

many times when the amount of vibrational energy transmitted from one

room to another through a partition is of more interest than the reverbera-

tion properties of either room alone. The problem is here one of wave

attenuation. A commonly used

measure of the effectiveness of any

such sound insulating layer is the

transmission loss TL through the

structure, denned as

TL = 20log10
Ei db, (12-22)

where pi is the acoustic pressure

in front of the incident face and p2

is the acoustic pressure on the far

side of the conducting layer. The

ratio pi/p2 can be measured di-

rectly with small microphones

placed on each side of the struc-

. ture. A laboratory arrangement

suitable for the measurement of the

transmission loss through small

light samples is shown in Fig.

12-4. In the case of large parti-

tions, the panel to be studied is

usually mounted between two

highly-reverberant rooms and, with

a test source running in one room,

Cement 7

Cement

Panel under test

Fig. 12-4. Arrangement used to measure

transmission loss for lightweight structures.

(After Wallace, Dienel, and Beranek.)

the pressure levels are measured in both rooms. These pressure measure-

ments need not be made near the panel, since in each room the energy

is distributed uniformly (or nearly so). Measurements made in this

HHM
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manner must be interpreted somewhat differently than when small-scale
laboratory measurements are made, because energy is incident upon
the panel from all directions, and also because the values of the acoustic
pressures are affected by wall absorption.*

In general, good sound insulators (having high transmission loss) are
loose and porous to provide the maximum attenuation through viscosity
and heat conduction losses. However, internal attenuation is actually a
factor of secondary importance in the sound insulating phenomenon.
Rather it is the impedance "mismatch" that accomplishes the desired end,
and mounting the soft material upon a relatively hard surface is good
practice, since an abrupt change in acoustic impedance at the boundary
will turn back much of the energy that succeeds in penetrating the absorb-
ing layer. Indeed, the whole process of transmission of wave energy
through a laminated partition may be looked upon as a mechanical filter

network whose primary purpose is to attenuate all pressures applied to the
" input" surface. f For low frequencies, where the wavelength is large

compared with the wall thickness, the "circuit" contains " lumped" con-
stants. For high frequencies, the wavelength may become comparable to
the dimensions of the wall, and the circuit then must be considered to con-
tain distributed properties of inductance, capacitance, and resistance.

Much of the low frequency vibrational energy which penetrates parti-

tions does so by virtue of the resonance properties of large sections of the
wall acting as a unit. The wall itself then acts as a secondary radiator of
sound waves into the next room (a rather efficient one, because of its large

area). Hence the second wall surface should be coupled as loosely as
possible to the wall surface in the room containing the source of sound.
Sound transmission into an anechoic chamber is obviously undesirable.
To prevent the effect just mentioned, it is usual to suspend the whole
framework of the room on a system of springs or rubber pads that act as
mechanical filters for vibrations of audible frequency. Such construction
is expensive and, of course, not practical for ordinary buildings.

12-15 Acoustic filters. Electrical engineers often make use of electrical

filters. These filter circuits are electrical networks with the peculiar prop-
erty of offering selective transmission for currents of varying frequency.
The action is fundamentally based on the variation in the reactance of an
inductance or a capacitance with the frequency. A filter may have dis-

* See Buckingham, Natl. Bur. Standards (U. S.) Sci. Technol. Papers 20, 193-
219 (1925).

t See Morse, Vibration and Sound, p. 365, for some equivalent circuits.
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tributed properties of inductance and capacitance, as in the case of a trans-

mission fine or it may be designed with lumped circuit elements, that s,

made up of separate coils and capacitors connected by w.res having negh-

^A staple filter network of the lumped element type is shown in Fig. 12-5.

The impedances ft are all alike, as are the impedances *. The symmetry

of the network structure is apparent, each impedance * and its immediate

neighbor, * to its right being connected across the preceding impedance *.

Fig. 12-5. Generalized filter circuit. Fig. 12-6. High-pass electrical filter.

The currents in each succeeding impedance 2i would appear to diminish

from left to right, but it can be shown * that the currents in each imped-

ance zi will be the same in magnitude for those electrical frequencies where

the ratio 2i/z2 lies within the range to -4. There will be attenuation for

frequencies where the ratio 21/22 lies outside this numerical range, and so

the last impedance 21 carries a much smaller current than the first imped-

ance 21. K a resistor is placed at the right-hand end of the network, a

small voltage will therefore appear across such a load at frequencies outside

the " pass" range.

The range of frequencies which such a filter will pass with negligible

attenuation can be controlled by proper selection of the impedance elements

21 and 22 In Fig. 12-6 is shown a high-pass filter, made up of a reiterated

inductance L and capacitance C (the larger the number of sections, the

greater the attenuation outside the pass band). The resistance is assumed

to be negligible throughout the network. In this case,

2j _ -j(i/«c) _ _l_,
22 juL o)

2LC
(12-23)

Fig. 12-7. Low-pass electrical filter.

* See A. B. Wood, A Textbook of Sound, pp. 498-502, G. Bell & Sons (1941)
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This ratio will be zero at the frequency / = <», and equal to -4 when
/ = l/(&vVLC). The filter is called a high-pass filter because all frequen-
cies from infinity down to a particular frequency are passed without
attenuation.

To design a low-pass filter it is necessary only to transpose the L's and
C's. This circuit is shown in Fig. 12-7. In this case,

Zl
= - o?LC. (12-24)

:i(i/«C)

For z,/z2 to lie within the range of zero to -4, the frequency must lie be-
tween zero and the value/ = I/OVLC). Hence the network is a low-pass
filter.

1

;
.-

In view of the close analogy that can be drawn between the behavior of
electrical circuits and certain acoustical systems, one would expect to be

>Jlll/////>»>//>/»///l/)»>/l/»in>»»i>?)».
tuiuiitttt!Hftnu)titumh

Fig. 12-8. High-pass acoustic filter.

able to construct acoustical analogs to electrical filters of both the high-pass
and low-pass types. G. W. Stewart has made theoretical and experimental
studies of acoustical filters of all sorts. The construction of an acoustical
high-pass filter is shown in Fig. 12-8. The sound waves enter a pipe
having short side tubes open to the surrounding air and attached at regular
intervals along the pipe. In Fig. 12-8 the acoustic elements which are
analogous to the inductances are the masses or "inertances " of the volumes
of air free to move back and forth in the side tubes (as in the neck of the
Helmholtz resonator). Between the side tubes are sections of air whose

2000
Frequency in cycles-sec

-1
5000 7680

Fig. 12-9. Transmission properties of acoustic high-pass filter of type shown in
Fig. 12-8. (After Stewart)
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elastic properties furnish a compliance analogous to the capacitance of an

electrical filter. A consideration of the acoustical behavior of this type^of

structure indicates that sound frequencies above a certain value will be

transmitted down the main tube with very little attenuation, if we neg ect

friction and dissipation at the walls. Stewart constructed a.filter , f this

type with six sections, and measured its transmission. The resutang

aranh is shown in Fig. 12-9. Remembering the compressed nature ot the

oXlI scale, it will be seen that at the cutoff frequency (about 600 cycles-

„„„„„„t»>'»>'"--"-t'""""""m,m7-

Fig. 12-10. Low-pass acoustic filter.

sec- in this case) the drop in intensity at the output end of the filter is

more than 20 db, and the intensity is therefore less than 1% of its initial

value The irregularities in the curve for the transmitted frequencies are

probably due to edge effects, etc., not taken into account in the equations^

Figure 12-10 shows an acoustic low-pass filter. Here the air enclosed

in the attached side chambers furnishes a compliance analogous to the

capacitance of the circuit of Fig. 12-7, while the volumes of air m the main

tube between successive chambers supply the inertance, analogous to the

inductances. The transmission characteristics are indicated in the graph

°f

Electrical filters are usually designed to be terminated at either end by

resistances of specified value. If such terminating resistances are simu-

lated in acoustical filters, even better agreement is found between the

behavior of the acoustical and the electrical filter. In Fig. 12-12 are

500 I00O a000 5000 7680

Frequency in cycles-sec"'

Fig. 12-11. Transmission properties of acoustic low-pass filter of type shown in

Fig. 12-10. (.After Stewart)
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shown for comparison an electrical and an acoustical filter designed for the
same pass characteristics. Both are simple low-pass filters.* In the
equivalent acoustical circuit, the compliance of the chamber V corresponds
to the capacitance C in the electrical filter. The masses of air moving in
the channels t supply the inductances corresponding to L in the electrical

circuit. Frictional forces along the walls of the channels furnish elements
equivalent to the resistances R. To terminate the filter properly, the

.ZX.

Acoustic low-pass filter

terminated by acoustic

resistance

40 100 200 400 600
Frequency in cycles-sec* 1

(a)

R L L

1 1 T c
t

r
Electrical low-pass filter

terminated by electrical

_ resistance

40 100 200 400 600
Frequency in cycles-sec' 1

(b)

Fig. 12-12. Electrical filter and analogous acoustic filter. (After White and Baxter.)

* Quarterly Progress Report, Acoustic Laboratory, M.I.T., July-September 1948,

pp. 7-9.
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vibrating air set into motion by the loudspeaker is forced through a layer

oTporous ceramic supplying effective resistance. A similar layerof™
is placed at the output of the filter, as shown. The transmission Properties

of the electrical and the acoustical filter are almost identical, as will be seen

from the graphs. The behavior of the acoustical filter deviates slightly

I that rfthe electrical filter at frequencies above about 400 cycles-see^

partly because at the higher frequencies the dimensions become comparable

to the wavelength and the filter begins to have distributed rather than

'Tt^made up partly of electrical and partly of acoustical compo-

nents It is easier to perform filter operations in the electrical section.

Mter behavior, however, is an important factor in many ^-oust^al

problems. From one point of view, an exponential horn is a type of h,gh-

nass nher since frequencies below a certain critical value will not pass

thigh Another example of filter action is the manner in which the

3c impedance at a partially absorbing surface controls the degree of

absorption as a function of the frequency.

12-16 Ultrasonics. Frequent reference has been made throughout

this book to the range of frequencies for longitudinal waves to which the

human ear will respond. The upper frequency limit for an average ear_*

no higher than about 20,000 cycles-sec-. Frequencies higher than this

""££££!n of longitudinal waves of ultrasonic frequency through

zases liquids, and solids follows, for the most part, the same laws of

tehaviorTs in the case of waves within the audible frequency range. There

areTome anomalies characteristic of the higher frequencies, as already

pointed out in Chapter 6. At very high ultrasonic frequencies, the wave

velocity in gases tends towards the isothermal rather than the adiabatic

Ito there are appreciable absorptions of frequencies of the order of 10'

cvcles-sec- by certain gases and vapors having polyatomic molecules In

general however, the behavior of ultrasonic waves constitutes simply an

extension of the properties of high frequency audible waves into the super-

aU<

To
le

t£°one example, the diffraction pattern of a fair-sized source

radiating at frequencies above the audible is similar to that discussed in

Cnapter 4 for high audible frequencies, except that the various diffractionK even more crowded together because of the extreme shortness o

the wavelength. The wavelength in air for ultrasonic frequencies of the

0*177several hundred thousand cycles-sec- (about the upper hmitof

frequencies which it is practical to produce) is in the neighborhood of 1 mm.
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Fig. 12-13. Sim-
plified drawing of sec-

tion of Galton whistle.

Hence almost any ordinary sized generator will radiate a beam in air. In
liquids and solids, where the propagation speed is higher, the wavelength

will be correspondingly longer.

While the transmission problems are similar to

those for waves of audible frequency, there are special

difficulties in the design of ultrasonic sources and
ultrasonic receivers. We shall consider these in the
following sections.

12-17 Ultrasonic sources. Generators of the whis-

tle type have long been used as ultrasonic sources.

Most familiar is the Galton whistle, designed by
Edelman in 1900. In this whistle there is a short

resonating cavity, the air in which is set into vibra-

tion by blowing a stream of air against the sharp
edge of the opening to the cavity (Fig. 12-13). By
adjusting the axial position of the plunger P with a
screw, the frequency of resonance can be varied criti-

cally over a wide range. Frequencies up to about
100,000 cycles-sec

-1 can be obtained and held fairly

constant, provided the air pressure is kept steady.
This whistle is capable of generating a considerable amount of power in

the ultrasonic region, although its use requires some care in adjustment.
It is possible to design a transducer of the electromagnetic type which

will have a fair efficiency at frequencies as high as 20,000-30,000 cycles-

sec
-1

, and is therefore capable of operating in what might be called the
near-ultrasonic region. Above 30,000 cycles-sec

-1
, the output falls off

rapidly, due mainly to the difficulty of reducing the mass to the required
low value while still maintaining the rigidity characteristic of an acoustic

piston.

For frequencies up to about 60,000 cycles-sec-1 the magnetostriction
generator is a most effective radiator. Its development as an ultrasonic

source is largely due to Pierce. All ferromagnetic metals experience a
small change in dimension when in the presence of a magnetic field. This
effect is called magnetostriction, and may be either an increase or a decrease
in length. The extent of the change depends on the material, its history,

the temperature, and the strength of the field. A rod made of nickel, a
material whose magnetostrictive properties are well known, will shorten if

placed parallel to the field. Hence if the rod is placed inside a coil of wire
carrying an alternating current, the long dimension of the rod being along
the axis of the coil, longitudinal vibrations will be set up in the rod. The
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Nickel rod

freauency of the rod vibration will be twiee that of the alternating current,

ince thefroa shortens regardless of the direction of the field. Just as f

he ordinary telephone receiver, the addition of a constant magneto field as

a bias wTl ensure a rod frequency which is the same as hat of the alternat

11 curlent If the frequency of the current happens to comcide with the

re~y of a natural mode of the rod resonance, the amplitude of the rod

mX may build up to a fairly high value When working at the fun-

damental mode of vibration of the rod, with

a velocity antinode at each end and a node

at the center, amplitudes of the order of

10-H may be obtained, where I is the length

of the rod.
.

The process involved in magnetostriction

is a reversible one, as might be expected.

If the rod is compressed or stretched in the

presence of an external field, the flux density

within the rod is varied. This makes possi-

ble an electronic oscillator of the feed-back

type, where the mechanical vibrations of the

rod constitute the predominant factor de-

termining the electrical frequency of oscilla-

tion of the circuit. The elements of this

chcuit are shown in Fig. 12-14. The rod is clamped at the
:

center* en-

courage the fundamental mode. The L-C circuit is tuned to the natural

frequency of the rod. The necessary steady field bias is not shown

The velocity of longitudinal waves in metals is such that a nickel rod

resonatiug at its fundamental mode with a frequency of 60,000 cycles-sec-

sTbout cm long. With shorter rods it is difficult to dehver much power.

The efficiency of power delivery for modes higher than the ***£*£
considerably less than for the fundamental mode. Hence 60,000 cycles-

e™ is near the upper practical frequency limit for™ffi^*£
erators For frequencies in the neighborhood of 20,000-30,000 cycles

sec-, however, such generators have good efficiency and are qufle rugged,

and hence are much used in acoustic ranging devices (Section 12 21).

12-18 Piezoelectric generators. We have already mentioned the

application of the piezoelectric effect to the design of microphones loud-

sneakers and phonograph transducers. In all these applications the

£££ driven

P
at assorted audible frequencies, all of which are well below

the natural frequency of longitudinal vibration of the crystal In the

crystal microphone and phonograph pickup, particularly, the power level

Fig. 12-14. Essential circuit

for magnetostriction oscillator.

(Circuit to supply steady mag-

netic field bias not shown.)
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Fig. 12-15. Quartz
plate between elec-

trodes.

is low and the use of a comparatively fragile crystal like Rochelle salt is

possible.

The reversible character of the piezoelectric effect suggests the use of a
crystal as a direct source of ultrasonic waves; the efficiency should be high
at frequencies corresponding to the natural resonances of the crystal.
Quartz is a very strong material of exceptionally low internal damping.

It can be cut in the form of thin slabs whose thickness,
if properly oriented with respect to the crystal axes,
can be made the determining factor as far as the res-

onant frequency is concerned. In Fig. 12-15 is shown
such a crystal plate. The plate is so cut with respect
to the crystal planes that the direction z is the optic
axis and the direction x, normal to the flat surfaces
of the plate, is one of the polar axes of the crystal.

If alternating potentials are applied to electrodes
clamped or cemented to the flat surfaces of the quartz
slab, two types of periodic deformation will occur.
One of these will be a change in thickness along the
^-direction and the other will be a change in length

along the ^/-direction. By choosing the proper frequency, longitudinal
stationary waves can be set up in the crystal along either the x- or y-direc-
tion. If we consider the fundamental modes only, " thickness vibrations"
will obviously make possible the higher frequen-
cies; "length vibrations" are more suitable when
lower frequencies are desired. In either case,

one face of the crystal becomes the direct acous-
tical radiator of longitudinal waves.
A simplified circuit for an electrical oscillator

of the electronic type is shown in Fig. 12-16.

As in the magnetostriction generator arrange-
ment, the mechanical resonance of the radiator
(in this case the crystal) essentially determines
the frequency of oscillation. By tuning the
L-C combination to one of the higher modes of

vibration of the crystal, the latter may be made
to generate waves whose frequencies are multi-
ples of the fundamental.

It should be mentioned that during thickness vibrations the flat surface
of the crystal does not necessarily move as a unit, like a piston. Instead,
there are variations in phase and amplitude due to the simultaneous
existence of longitudinal waves in the crystal parallel to the flat surfaces.

if
111

I

Quartz

llr^"^ crystal

Fig. 12-16. Hartley os-

cillator circuit with quartz
crystal.
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These waves are the result of shrinkages and expansions in the length

Seat earl most be exercised to prevent sueh vibrations from budding up

until the crystal is shattered.

19 19 Detectors of ultrasonic waves. Ordinary microphones are un-

suiSbtefor Section of waves of ultrasonic frequency for the same

reasons that ordinary types of loudspeakers make poor radiators at fre-

auencfes above the audrble. Since magnetostriction generators and gen-

S ofthe piezoelectric variety are essentially tuned vibrators operating

at a fixed frequency, it seems quite feasible to use a receiver that is tuned

to detect the one frequency radiated by the source. Piezoelectric erystah

mat espedaUy goJ detectors, since the crystal is an efficient reversib

e

toLducer The crystal is also a vibrator of very low damping, and it

^ot as a detector depends critically on the frequency^ The crystal .

first ground to have a natural frequency as near that of the source
;

as

noTsibT Small differential changes in frequency of vibration may then

n!! about by mounting one of the metallic plates constituting the

electas£S above the surface of the crystal and varying the distance

between^the plate and the crystal face by means of a screw adjustment^

Si adjlment introduces a variable capacitance in series with he

2 tivSpedance of the crystal itself, and?*££££*£%£
frequency The same thing may be accomplished with an external series

Irequency.
electrical output of the crystal will, of course, be

mhTuquid medium the radiation efficiency is greater than for ai, he

increased damping also broadens the resonance curve. As a result, the

nhnve refinements in adjustment are unnecessary.

rcSter 10 mention was made of the possibility of making a sound

wave Stector whose response is due to radiation pressure. For intensities

rnXtuSe rlnge, such a detector is not sensitive enough for any practi-

cal use In the ultrasonic field intensities are often much greater, especially

Sh Mghtquency longitudinal waves in^. Under ^condi=
the radiation pressure principle has proved useful. Excess acoustic

uressures of one atmosphere or more are not uncommon in liquids. The

c—ndTng radiation pressure upon a reflecting surface in the liquid
.

*

then oHhe order of several hundred dynes-cm-, a force of sizable

Xoll wnTwill give good deflection if allowed to actuate a torsion

vane.

* See Bergmann, Ullra^ics, pp. 44-49, John Wiley & Sons (1939), for a de-

scription of radiation pressure detectors for use in liquids.
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12-20 Coupling between transducer and medium. In Chapter 5 and
elsewhere considerable attention was given to the problem of efficient trans-
formation of the vibrational energy of a source of sound into radiant
acoustic energy. One of the great difficulties in introducing large amounts
of power into air lies in the relatively small value of the specific acoustic
impedance za (= 42 gm-cm^-sec"1

) . Even in the ideal case where the
waves are plane, the average acoustic power per unit area, (|rms)

2
PoC, will

be numerically small unless £rms is itself impossibly large. We are 'then
driven to the use of sources having large surface areas, a solution which
creates difficulties of its own. Fortunately, because of the great sensitivity
of the human ear, very large amounts of acoustic power are rarely necessary
or desirable.

In the ultrasonic frequency range the picture is much brighter. Due
to the shorter wavelength in air, the radiation from most ultrasonic sources
has less angular divergence. In liquids, where the wavelengths are several
times as long as in air, the advantage in this respect is much less apparent.
The important difference between a liquid and a gas, as far as the efficiency
of energy transfer into the medium is concerned, lies in the greatly in-
creased value of p c in the case of the liquid. The specific acoustic imped-
ance for fresh water is 1.43 X 10 5 cgs units. For sea water it is slightly
greater, 1.54 X 105 cgs units. In the commonly used ultrasonic generators,
the mechanical energy imparted to the vibrating source exists within the
bar or plate in the form of longitudinal waves. For the nickel rod so often
used in magnetostriction generators, Poc is 4.2 X 106 cgs units. For the
quartz almost universally used in the piezoelectric generator, Poc is 1.5 X 106

cgs units. These values are much closer to the value of pQc for water, or
any other ordinary liquid for that matter, than they are to the value'for
air. Hence, as pointed out in Chapter 8, the energy will rapidly pass into
the medium, instead of remaining as useless local energy of vibration.

The transfer is still further aided because of the small amplitudes possible
with waves of high frequency. Since the radiated power depends on the
square of the particle velocity imparted to the medium, and since the
velocity is in turn equal to 2tt/£, it should be clear that as the frequency is

raised, the amplitude may be dropped with no diminution of radiated
power. Therefore very small amplitudes of motion at the source may give
rise to large amounts of acoustic power. This makes possible small area
sources operated through conservative amplitudes, as compared with the
large area, large amplitude sources necessary at the lower audible frequen-
cies.

All of the above factors leading to efficient energy transfer are important
in the problem of underwater signaling, to be discussed in the next section.
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12-21 Undersea signaling and ranging. The idea of using high fre-

quency longitudinal waves to locate underwater obstacles was suggested as

long ago as 1912 by L. F. Richardson. It was the careful work of Paul

Langevin during and after World War I that really laid the foundation for

the principles of undersea signaling and for much of the general subject of

ultrasonics as well. Despite the desperate scientific study of aqueous ul-

trasonics during World War I, with an eye to the detection of enemy sub-

marines, little actual use of the technique was made before the ending of

hostilities. Between the two World Wars, however, considerable progress

was made in the design of suitable transducers and their associated circuits.

During World War II and afterwards much research has been done, not

only in the development of suitable sources and receivers, but in the careful

study of the fundamental physical phenomena associated with the propa-

gation of high frequency waves through water. A considerable portion

of the results of these studies has not been published, since the findings are

of military interest.

Because electromagnetic waves will not propagate through sea water,

ultrasonic waves are used as a means of friendly communication between

submerged submarines, or in the case of disaster, between a sunken sub-

marine and a surface vessel. All that is necessary is to mount a suitable

transducer on the hull of each vessel. By a change of connections, a

transmitter can also be made to serve as a receiver. By electrically modu-

lating the superaudible frequency (usually of the order of 30,000 cycles-sec *)

at a rate determined by the speech frequencies, telephony is made possible.

The principle of undersea acoustic ranging is essentially that of the

ordinary echo in air. If an acoustic pulse of short duration is radiated in

the direction of an obstacle, such as the bottom of the sea or a submerged

vessel some of the energy will return in the direction of the source, arriving

back after a small finite interval of time. The time required for this return

depends upon the speed of the waves in water, which is known, and upon

the distance from the obstacle. Hence it is possible to compute from the

time delay the distance of the obstacle from the source. The operation of

such an acoustic system is quite similar to that of the well-known radar

ranging system, which makes use of electromagnetic waves. In the acoustic

procedure, the time lag between the outgoing and returning pulse is much

greater than in the radar system, since acoustic waves travel much more

slowly than electromagnetic waves. Therefore simpler means, some of

them mechanical in nature, can be used to record the acoustic time inter-

val.* A record on a moving strip of paper will give good precision.

* See Bergmann, op. tit., p. 198, for a description of a system used for depth

sounding.
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Practical depth sounding systems have the transmitter and the receiver

mounted on the bottom of the vessel. For locating distant enemy sub-

marines, it is advantageous (as in radar) to have the waves concentrated

as far as possible in the form of a beam. This energy concentration

is desirable in the interests of energy conservation and it also gives an

indication of the position of the enemy vessel, as well as its distance, since

the scattered energy which returns will plainly be a maximum when the

beam is directed towards the obstacle.

12-22 Diffraction of light by liquids carrying ultrasonic waves. In 1932

Debye and Sears * reported the diffraction of light by liquids carrying

ultrasonic waves. The experimental

arrangement is shown in Fig. 12-17.

A parallel beam of light, originating

at the slit t, is allowed to pass through

the cell C, containing a liquid. A
lens on the other side of the cell

focuses an image of the slit on the

screen S. At the bottom of the con-

tainer is an ultrasonic generator that

sends longitudinal waves into the

liquid in a direction transverse to

the beam of light. In the presence

of acoustic waves, a diffraction pattern is visible on the screen, characterized

by a central maximum with symmetrical subsidiary orders on each side,

much as in the usual pattern of an ordinary diffraction grating.

The cause of the above phenomenon is the presence in the liquid of layers

of variable density, periodically arranged along the direction of travel of

the acoustic wave. The variations in density are associated with varia-

tions in the index of refraction. A scattering process results, similar in

many respects to the Bragg scattering of x-ray energy by layers of atoms

within a crystal. The periodic variation in the optical properties of the

liquid are in this case analogous to the regular structure of the crystal

lattice. The fact that the "lattice" in this case is traveling rapidly

through the liquid at a speed equal to that of the acoustic wave is no

complication, since this state of affairs will not change the essential angular

relationship that determines the directions for reinforcement.

The simple notion that the diffraction originates with the scattering

from regularly spaced layers would, for monochromatic light, lead to the

Quartz crystal generating

ultrasonic waves in liquid

Fig. 12-17. Arrangement to show dif-

fraction of light by liquid carrying ultra-

sonic waves.

* Debye and Sears, Proc. Nat. Acad. Sci. Wash. 18, 410 (1932).
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formation of one order only, on each side of the central image. Actually

as many as ten orders can be seen, their angular dispersion agreemg with

that given by the usual equation for a diffraction gratmg,

where h is the wavelength of the light, X, is the wavelength of the acoustic

disturbance in the liquid, and n is an integer specifying the order

There are many subtleties of acoustic diffraction patterns which become

apparent in the complete theory of their formation In the case of travel-

ing acoustic waves, for instance, there is a small observable^opplereffe t

in the behavior of the light, due to the motion of the "grating. We a e

mainly concerned here with the possible uses of the Debye-Sears effect as

a tool It is quite obvious that the spacing of the lines n.
;
the diftact on

pattern may be used to determine the acoustic wavelength, through the

use of Eq. (12-25), otherwise a difficult problem at these frequencies. r»

the next section we shall mention a

further application of the Debye-Sears

effect.

Oil to insure

good contact

Generator of

ultrasonic waves

Fig. 12-18. Use of ultrasonic waves

to detect inhomogeneities in solid ma-

terials. (After Sokoloff.)

12-23 Testingofmaterialswith ultra-

sonic waves. The detection of flaws

within optically opaque materials by

the use of ultrasonic waves depends on

the scattering effect associated with

flaw regions in an otherwise homoge-

neous sample. To introduce appreci-

able amounts of energy into a sample,

say, of the metal of a beam, it is com-

mon to use a liquid such as oil between

the surface of the wave generator and the surface of the material. Other-

wise losses due to reflection at the somewhat irregular boundaries of con-

tact may prevent entry of sufficient acoustic energy. The same problem

arises at the other side of the material, where the waves are detected.

Figure 12-18 shows the essential parts of one type of testing equipment,

devised by Sokoloff.* The cross section of the bar to be tested is repre-

sented by the rectangle M. The waves are introduced at the left surface

by means of a quartz transducer. In contact with the other side of the

material is a liquid held in the container B. An optical system is arranged

* Sokoloff, Phys. Z. 36, 142 (1935).
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to send a beam of light vertically through the liquid, in the manner de-
scribed in the preceding section. The acoustic waves present in the liquid

because of energy transmitted through the material cause a diffraction

pattern to appear on the screen S. As the sample is moved slowly along,
the pattern will remain of constant intensity only if the material is perfectly
homogeneous. Wherever there are internal inhomogeneities, internal

scattering of energy will occur, resulting in noticeable variations in the
intensity and sharpness of the interference lines. In this way internal

defects are discovered.

The above testing method has been discussed largely because it is an
interesting application of the Debye-Sears effect. Most of the equipment
used for industrial testing today makes use of the echo principle discussed
in Section 12-21. Flaws are assumed to exist wherever scattering occurs.

12-24 Other industrial applications of ultrasonic waves. Ultrasonic
waves of great intensity produce marked effects upon mixtures of different

liquids and upon liquids containing suspended particles. As early as 1927
Wood and Loomis performed experiments of this sort, in which they
showed that a mixture of oil and water can be transformed into a very
stable emulsion. As mentioned previously, it is possible to produce in a
liquid variable acoustic pressures of sufficient magnitude so that peak
values of several atmospheres, plus or minus, can occur. This often results

in violent cavitations within the body of the liquid and consequent large
mechanical dispersive forces. Too much of this effect is a detriment in

some experiments. It is usually desirable to maintain a sufficiently high
external pressure on the liquid so that the total internal pressure always
remains positive.

Ultrasonic waves have proved of considerable value in the production of

colloidal solutions of metals with particles of controllable size. The proce-
dure consists of sending the waves through an electrolytic cell. In the
presence of the wave, the minute particles of the metal are left in suspen-
sion in the liquid, and those of larger size collect at the bottom of the cell

instead of adhering to the cathode. They are literally shaken loose from
the cathode as soon as they touch the surface and deliver their charge.

In gases, the effect of the presence of high frequency waves is to coagulate
small suspended particles, rather than to disperse them. This is primarily
a Bernoulli effect, related to the process which causes the fine striations in

the Kundt's tube experiment (Chapter 6). In this way dust, smoke par-
ticles, etc., can be removed from the air and other gases.

Many experiments are in progress to discover additional industrial

applications for ultrasonic radiation. The chemical and photographic
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industries are particularly interested, primarily because of the effects just

described.

12-25 Biological effects of ultrasonic waves. Experiments performed

by Langevin, Wood and Loomis, and others indicate the great destructive

power of high frequency vibrations upon living tissue. The effect seems

to be largely indirect, rather than the result of a simple mechanical shaking

of the structure. Some of the effect is due to the severe temperature rises

which often ensue and some to the formation of bubbles of air within the

tissue adjacent to regions where the pressure (due to the presence of the

ultrasonic wave) has dropped well below the atmospheric level. It is

the formation of these bubbles which often tears the tissue apart. Small

organisms like protozoa, and even fish and frogs, can be destroyed by this

method. Experimentation with ultrasonic waves as a possible means of

destroying diseased tissue such as cancerous cells has been conducted. The

effects of the waves upon bacteria and other minute organisms are varied

and often difficult to interpret; they are sometimes killed, while at other

times their virulence seems to be increased. Much work remains to be

done along these lines before a consistent picture of the effect of high fre-

quency mechanical vibrations can be obtained.

Since the introduction of jet-propelled aircraft, serious thought has been

given to the effect upon an occupant (and others outside the plane) of

constant exposure to vibrations in the ultrasonic region. It is quite

possible that deleterious physiological effects result from prolonged expo-

sure to waves of frequencies far above the limit of audibility.

12-26 Acoustics in relation to other branches of physics. The study

of acoustics for its own sake is well worth the attention of every serious

student of physics, but there are also cross-relationships with other branches

of pure physics which are important both for their influence upon the

development of acoustics and also for their beneficial effect upon other

fields. In this sense the subject of acoustics may be ''applied" to the

solution of problems outside its own direct field. To mention an impor-

tant historical example, the notion of quantized energy states originated in

problems of vibration in the field of acoustics, and only later was this

concept adopted for use in problems involving electromagnetic radiation.

The theorem of Fourier originated with a study of heat flow, was taken over

in vibration problems like that of the string, so important to the subject of

acoustics, and finally found its way into modern atomic radiation theory

and even into the discussion of meson waves.

The experimental aspects of modern acoustics are reflected in a current

project to study the scattering of electromagnetic radiation by investi-
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gating acoustic scattering by an array of spheres. As an experimental

tool, ultrasonic technique is proving most useful in experiments aimed at a

closer determination of interatomic forces in solids at temperatures close

to absolute zero. Such investigations involve a careful measurement of

the speed and attenuation of high frequency longitudinal waves in super-

conducting solids. Doubtless many similar research projects making use

of modern developments in experimental acoustics are in progress.

In short, acoustics, until recent years a rather neglected branch of

physics, is about to take its rightful place as a subject of great intrinsic

beauty and interest, and as a field of endeavor capable of continued growth

and development.

PROBLEMS

1. (a) By what experimental means
would one test, in a given room, the

validity of the equations for the ideal

reverberant chamber? (b) How, in gen-

eral, would the energy density vary with

position, under steady-state sound con-

ditions, in a practical room whose rever-

beration time was very short? (c) An-
swer part (b) for an anechoic room.

2. (a) Using the Sabine equation (12-

18), compute the reverberation time for

a room which is a cube 20 ft on an edge,

where the walls all have uniform surface

treatment. The value of a s is 0.1.

(b) Compute the reverberation time for

the same room if for two of the walls a s is

0.1, and if for all of the remaining walls it

is 0.2.

3. The cubical room of problem 2 has a

uniform wall treatment where as is 0.1.

Covering one wall with a different material

lowers the reverberation time by 5%.
Find the value of a 3 for this material.

(Make use of the Sabine equation.)

4. Compute the reverberation time

for the room described in problem 2(a),

using the Norris-Eyring equation.

5. A small single source of sound is

placed at the center of a spherical room of

radius R having walls which are nearly

perfect reflectors. Find all the possible

modes of vibration of the room which
may be excited under these conditions.

6. Assume the wall surface of the room
described in problem 5 to have an absorp-

tion coefficient as whose value is 0.25.

(a) Find the reverberation time by both
the Sabine and the Norris-Eyring equa-

tions, (b) How will the reverberation

time vary with the diameter of the room?

7. The transmission loss through a cer-

tain partition is 40 db. If the intensity

level on the high intensity side of the par-

tition is 85 db, find the rms acoustic pres-

sure on the low intensity side in dynes-

cm"2
.

8. An acoustic piston of radius 10 cm is

surrounded by a large flat baffle and is

radiating acoustic energy as a single

source, the frequency being 30,000 cycles-

sec
-1

, (a) Find the polar angle /3, measured
with respect to the normal to the piston

surface, for the appearance of the first dif-

fraction minimum, assuming the piston to

be radiating into sea water, (b) Compute
j8 if the piston is radiating into air and
compare the result with the angle found

in part (a).



APPENDIX I

THE INTRODUCTION OF THE VELOCITY ^^J^° ™
Differential Equation for Space Waves

We may start with the equation of continuity:

d(pu) ,d(Pv) ,
§(pw) = _dP. (1)

-^" +
dy

*"
a. a*

The first term on the left may be written:

da;
P dx ^ dx

f

which, since p = Po + P<>s, becomes

2£-"S+-S (2)

assuming small changes in p, so that the difference between p and p. may

be neglected.
amplitude disturbances, is

r^ilto :,, which is simply * Since . is always a small fractmn, we

-^fl-^-^'^SS^^^U- Eq- (1) bythe
For the above reasons it is tnereiore vauu ^

simpler equation ^ ^
P0 te

+ Po^ + Po
a2 at

Now, introducing the relationships between the velocity components

and $, we may write Eq. (3) as

#2$ d2$ . d2$ _ 1 §P

or

ax2 a?/
2 as2 po a*

iaP _ as. (4)^ = 70^" *
319
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We finally make use of the relationship (see Appendix 2)

Tt
= cs -

Differentiating this equation partially with respect to the time and intro-
ducing the result into Eq. (4), we obtain the differential equation in terms
of <£:

c2V2* = f- (5)

_

The same transformation to spherical coordinates discussed in Sec-
tion 3-4 will then yield, for disturbances having spherical symmetry,

, d
2Ql>) = d 2

(r<S>)
C

dr2
dt2 ' (6)
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The Relationship between the Velocity Potential $ and the

Condensation, s

We make use of Eq. (3-5a)

:

_ dp = d(pu)

dx dt

du . dp /n
= »°Tt

+u m (1)

du ds= p0 M +(>0U
Jt>

neglecting the second order difference between p and p .

The second term on the right, for small amplitude disturbances, is small

compared with the first term, essentially because the condensation s, under

these conditions, is a very small fraction. Therefore we may write Eq. (1)

in the form
du dp , \

p«Tt
=
~Tx (2)

Introducing the relationship p = (Bs,

po
dt -~®dx>

or
§U _ _ 2

ds

dt~ ° dx

Similar equations may be written for v and for w. We have, as a result,

the three equations:
du _ _ 2

ds

dt
~ ° dx'

^--c*— (3)
dt
" C

dy>
KJ

§W = _ 2
ds

dt
C

dz

Integrating each of these equations partially with respect to time, we

obtain:

IT l
sdt

>

v=-c^ f'sdt, (4)

fy Jo

w= - c2

ifo
sdL

321

u =
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(Note : Any constant of integration must be zero for periodic disturbances,

since the average value of the wave parameters is always zero.)

Now introducing the velocity potential relationships, i.e., u — — —

,

OX

v = — —- and w — — —, we see that
dy dz'

(5)

dx
- c2i£sdt

>

dy~
- c2i£sdt

>

dz
-C2 ^- f's dt.

to Jo

may therefore be seen that

•

$ = e
J

sdt,

dt
" c2s.

or

(6)
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TABLE OF FRESNEL INTEGRALS

P irv* f\ **,
x=

J
cos— dv, y = I sin— dv

V X y V X y

0.00 0.0000 0.0000 2.50 0.4574 0.6192

0.10 0.1000 0.0005 2.60 0.3890 0.5500

0.20 0.1999 0.0042 2.70 0.3925 0.4529

0.30 0.2994 0.0141 2.80 0.4675 0.3915

0.40 0.3975 0.0334 2.90 0.5626 0.4101

0.50 0.4923 0.0647 3.00 0.6058 0.4963

0.60 0.5811 0.1105 3.10 0.5616 0.5818

0.70 0.6597 0.1721 3.20 0.4664 0.5933

0.80 0.7230 0.2493 3.30 0.4058 0.5192

0.90 0.7648 0.3398 3.40 0.4385 0.4296

1.00 0.7799 0.4383 3.50 0.5326 0.4152

1.10 0.7638 0.5365 3.60 0.5880 0.4923

1.20 0.7154 0.6234 3.70 0.5420 0.5750

1.30 0.6386 0.6863 3.80 0.4481 0.5656

1.40 0.5431 0.7135 3.90 0.4223 0.4752

1.50 0.4453 0.6975 4.00 0.4984 0.4204

1.60 0.3655 0.6389 4.10 0.5738 0.4758

1.70 0.3238 0.5492 4.20 0.5418 0.5633

1.80 0.3336 0.4508 4.30 0.4494 0.5540

1.90 0.3944 0.3734 4.40 0.4383 0.4622

2.00 0.4882 0.3434 4.50 0.5261 0.4342

2.10 0.5815 0.3743 4.60 0.5673 0.5162

2.20 0.6363 0.4557 4.70 0.4914 0.5672

2.30 0.6266 0.5531 4.80 0.4338 0.4968

2.40 0.5550 0.6197 4.90 0.5002 0.4350
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APPENDIX IV

Derivation of the Expression, u = ~ (Eq. 12-1).

In Fig. 1 we may consider dS to be an infinitesimal area of the wall
surface and dV an infinitesimal volume element located at a distance r

from the area dS.

[—JT\\ ^et e i be the instantaneous energy" density in the room. The energy
within the volume dV is therefore

dV-

Fig. l. Fig. 2.

etdV. The fraction of this energy "directed" towards dS is ^co/4tt,

where dm is the infinitesimal solid angle subtended by dS. If we
construct a ring-shaped volume element at a distance r from dS, we may
express dV as

dV = 2irr2 sin dr dd, (1)

where is the polar angle indicated in Fig. 2. Therefore the total energy
dEr directed towards dS may be written as

From Fig. 1,

dEr = %* ei dV. (2)

do) = dS cos

Inserting this expression in Eq. (2) ,and making use of the expression for

dV given by Eq. (1), we have

e,dS
dEr = sin 6 cos dr dd. (3)
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The total energy incident upon the area dS in a time dt is that originating

within a hemisphere of radius c dt, where c is the velocity of sound

:

Total energy incident upon the area =^ f^ f"
1^ „^ e^ (4)

dS in a time cm 2 J J

= 6
-fdSdL
4

Therefore the energy u incident per unit area and per unit time is

u = e

f (5)
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B'

(B

(Bo

<B<

c

C
e

e

#r

E
Ek

Ep

f
F

maximum strength of an J

acoustic source

bulk modulus j

adiabatic bulk modulus k

isothermal bulk modulus K
wave velocity

electrical capacitance L
instantaneous electrical po- m

tential M
energy density p

instantaneous energy density

initial or final energy density pm

maximum value of sinusoi-

dally varying electrical po-

tential pTm

root mean square value of

sinusoidally varying elec-

trical potential

total energy

total kinetic energy

total potential energy

frequency

instantaneous force

maximum value of sinusoi-

dally varying force

root mean square value of

sinusoidally varying force

instantaneous electric current

maximum value of sinusoi-

dally varying electric cur- s

rent $
acoustic intensity t
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Po

P
Po

r

R
R

reference value of acoustic

intensity

symbol abbreviation for 2tt/X

elastic constant (force per

unit displacement)

electrical inductance

mass

modulus of complex number

instantaneous acoustic pres-

sure

maximum value of sinusoi-

dally varying acoustic pres-

sure

root mean square value of

sinusoidally varying acous-

tic pressure

reference value of acoustic

pressure

instantaneous total pressure

average undisturbed pressure

polar coordinate

damping constant (force per

unit velocity)

electrical resistance

magnitude of real part of

complex impedance (elec-

trical, mechanical, or acous-

tic)

acoustic condensation

area

time
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T

u

u

u

V

w

v

V
Vo

w

Xm

X

Xm

period of SHM
reverberation time

energy flow per unit area and

per unit time

total energy flow per unit

time

cartesian components of in-

stantaneous particle veloc-

ity

variable used in Fresnel inte-

grals

volume change

instantaneous volume

average undisturbed volume

work

instantaneous linear displace-

ment

maximum value of sinusoi-

dally varying linear dis-

placement

instantaneous linear velocity

maximum value of sinusoi-

dally varying linear veloc-

ity,

root mean square value of

sinusoidally varying linear

velocity

instantaneous linear accelera-

tion

X

Zs

Zm

{z\

«:

magnitude of imaginary part

of complex impedance (elec-

trical, mechanical, or acous-

tic)

acoustic volume current

Young's modulus

complex form of impedance

(electrical, mechanical, or

acoustic)

analogous acoustic impedance

(complex)

normal specific acoustic im-

pedance at a boundary

(complex)

specific acoustic impedance

(complex)

mechanical impedance (com-

plex)

electrical motional impedance

(complex)

real part of complex imped-

ance (electrical, mechani-

cal, or acoustic)

imaginary part of complex

impedance (electrical, me-

chanical, or acoustic)

modulus of complex imped-

ance (electrical, mechani-

cal, or acoustic)

List of Greek Symbols

a phase angle

an normal absorption coefficient

as Sabine absorption coefficient

as average value of Sabine ab-

sorption coefficient

7 ratio of specific heats
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8 acoustic dilatation

X wavelength

£ instantaneous particle dis-

placement

km maximum value of sinusoi-

dally varying particle dis-

placement

£ instantaneous particle veloc-

ity

im maximum value of sinusoi-

dally varying particle ve-

locity

Po

$

COu

root mean square value of

sinusoidally varying parti-

cle velocity

instantaneous density of me-
dium

average undisturbed density

of medium

velocity potential

angular frequency

angular frequency for un-

damped particle vibration
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Absorption coefficients, for normal

incidence of plane waves, 192, 293,

299

mean value of Sabine, 293, 296

relation to specific acoustic imped-

ance, 196

table of Sabine, 198

Acoustic niters, 302

Acoustic impedance, 99, 103, 106, 193

Acoustic lens, 138

Actuator, electrostatic, 235

Adiabatic bulk modulus, 39, 128

Amplitude, definition of, 3

at displacement resonance, 27

at velocity resonance, 27

waves of large, 134

Analogs, electrical, 26, 99, 302

Andrade, E. N. C, 238

Anechoic room, 230

Arnold, H. D., 234

Attenuation of waves, in air, 141

in liquids, 146

in solids, 149

Audibility, threshold of, 52, 214

Baffle, diffraction around edges of, 96

effect of size of, 273

effect of radiation from a double

source of, 71

infinite plane, 123

Baumzweiger, B., 235

Beats, 13

Bekesy, G. von, 211

Bending of sound waves, 137

Beranek, L. L., 232, 234, 237, 248, 252,

255, 298, 299, 301

Bergmann, L., 311, 313

Bernoulli effect, 131, 316

Biddulph, R., 219

Binaural effects, 225

Biological effects of ultrasonic waves,

317

Bowing of a violin, 166

Bridge, acoustic impedance, 256

Buckingham, E., 302

Bulk modulus of a gas, adiabatic, 39, 128

isothermal, 39, 128

Calibration of microphones, 246

Carrier nature of speech, 202, 204

Caulton, 276

Chapin, E. K, 225

Chladni patterns, 172

Circular aperture, diffraction pattern of,

83, 280

Cochlea, properties of, 211

structure of, 210

Coefficient, absorption, 192, 196, 198,

293, 296, 299

damping, 20, 25, 109

determination of Fourier, 16

elastic, 9, 25, 110

transmission, definition of, 118

for direct radiator loudspeaker, 124

for long conical horn, 119

for long exponential horn, 119, 120

Colby, M. Y., 253

Combination of SHM's, of different fre-

quencies, 15

of same frequency, 11

Complex quantities, 101

Condensation, 38, 135

Continuity, equation of, 55

Convergence of Fourier series, 19

Cornu, spiral of, 89, 90

Corti, organ of, 210

Crandall, I. B., 234

Culver, C. A., 179

Cutoff frequency of exponential horn,

120

Damped vibration of a particle, 20

Damping, critical, 23

effect on amplitude at resonance of

Helmholtz resonator, 109

factor, 20, 25, 109

with forced oscillations, 28

Davis, H., 209

Debye, P., 314
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Decibel, 51

Density, energy, in ideal reverberant

room, 292

in a plane wave, 4, 48
steady state, in reverberant room,

293

Dickey, 276

Dienel, H. F., 301

Diffraction, for circular aperture, 83, 280
Fraunhofer, 82

Fresnel, 87

of light by liquids carrying ultrasonic

waves, 314

around loudspeaker baffle, 96
for multiple slit, 86
around obstacles, 94
for single slit, 75

Dilatation, 38, 135

Dipole, acoustic, 68, 273
Direct-radiator loudspeaker, 122
Disk, Rayleigh, 236

Displacement, particle, in a wave, 41
Doppler effect, 142

Double source, 66, 68, 273
effect of baffle upon radiation from, 71
radiation from, 68

Dubois, R., 247

Dudley, H., 204
Duff, A. W., 141

Ear, hearing properties of, 214
structure of, 209

Edge diffraction, 86, 96
Elastic constant, for gases, 39

for Helmholtz resonator, 110
for SHM, 9

for solids, 149

Electrical analogs, 26

Electrostatic actuator, 235
Electrostatic loudspeaker, 265
Enclosure, loudspeaker, 274
Energy, plane wave source of, 70

single source of for spherical waves, 70
in SHM, 10

in speech, 206
total, radiated by double source, 70

Energy density, for plane waves, 50
in reverberant room, 292, 293

Energy transfer in forced oscillations, 30

Equalization circuits, 283
Even functions, 18

Ewald, J. R., 211

Excitation of an organ pipe, 180
Eyeing, C. E., 297

Figures, Lissajous, 34
Filters, acoustic, 302
Firestone, F. A., 225
Fletcher, H., 203, 207, 217
Force, elastic, for Helmholtz resonator,

110

for SHM, 9

Force on acoustic piston due to air, 114
Fork, tuning, 171

Fourier's theorem, 16, 164

Fraunhofer diffraction, 82
French, N. R., 221

Frequency, cutoff, for exponential horn,

120

definition of, 3

Doppler shift in, 142

measurement of, 249
Frequency standards, 249
Fresnel integrals, 89, Appendix III

Fry, T. C, 225

Functions, even and odd, 18

Glover, R., 235

Hardy, H. C, 129

Hart, M. D., 141

Hartley, R. V. L., 225
Harvey, F. K, 138

Hebb, T. C, 131

Helmholtz, H., 211

Helmholtz resonator, 107, 276
resonant frequency for, 110

Herzfeld, K. F., 131

Hickman, C. N., 251

Horn, conical, 117

cutoff frequency for exponential, 120

exponential, 119

Huygen's principle, 76

Impedance, acoustic, 100, 104, 106

analogous, 106

measurement of, 254

normal specific, at a boundary, 193
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Impedance, specific, 103

for direct radiator loudspeaker,

122

at mouth of conical horn, 118

at mouth of exponential horn,

120

for plane waves, 104

for spherical waves, 104

Impedance, blocked, 266

electrical, 26

complex, 102

mechanical, 27, 194

motional, 266

Impedance bridge, acoustic, 256

Impedance match, 122

Integrals, Fresnel, 89, Appendix III

Intensity, 4

for plane waves, 50

for spherical waves, 62

units for, 51

Intensity level, 52

Inverter, acoustic phase, 276

Isothermal bulk modulus, 39, 128

Jenkins, F. A., 88

Kinetic theory and velocity of sound,

132

Knudsen, V. O., 141

Kock, W. E., 138, 225

Kundt's tube, 132

Lamb, H., 170

Laminar zones, Fresnel, 87

Large amplitude waves, 134

Larmor, 238

Lens, acoustic, 138

Level, intensity, 52

threshold value of, 52

pressure, 52

threshold value of, 52

Levels, table of sound, 253

Liquids, diffraction of light by waves

traveling in, 314

velocity of waves in, 145, 307

Lissajous figures, 34

Loomis, A. L., 7

Loudness, 4, 215

Loudness level, 215

Loudspeaker, direct radiator, 122, 262

electromagnetic, 266

electrostatic, 265

motional impedance of, 266

multiple channel, 280

piezoelectric, 265

MacLean, W. R., 247

Mark, J. van der, 166

Measurement, of absorption coefficients,

297, 299

of acoustic impedance, 254

in free space, 230

of frequency, 249

Membrane, basilar, 210

vibration of, 166

Meyer, E., 141, 251

Microphone, calibration of, 246

capacitor, 242

carbon, 241

electrodynamic, 243

piezoelectric, 245

pressure, 240

velocity, 240

Miller, D. C, 128

Modulus, adiabatic bulk, 39, 128

isothermal bulk, 39, 128

Young's, 148

Morse, P. M., 99, 100, 111, 197, 301,

302

Munson, W. A., 217

Musical scales, 226

Noise, 252

Norris, R. F., 297

Obstacles, diffraction around, 94

Odd functions, 18

Olson, H., 245, 273, 275

Organ of Corti, 210

Organ pipe, closed, 173

excitation of, 80

open, 174

Oscillations, forced, 24

free, 20

relaxation, 166

Parker, R. C, 238

Partial reflection, 190, 297

Perry, 276
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Phase inverter, acoustic, 72, 107, 276
Phase relationships, at a boundary be-

tween two media, 187, 188
with forced oscillations, 29
in pipes, 174

for plane waves, 47
for spherical waves, 62, 107

Piano, 179

PlELEMEIER, W. H., 129
Pierce, G. W., 7, 146
Pipes, closed, 173

open, 174

Pistonphone, 234
Pitch, 3

relation of, to frequency, 218
shift of, with high intensities, 220

Plane waves, 37

differential equation for, 40
general solution for, 42
periodic solution for, 44
periodic solutions for, alternate

forms, 46

reflection of, at a boundary, 184
specific acoustic impedance for, 103

Plates, vibration of, 172

Pol, B. van der, 166

Polar graph for diffraction, by circular

aperture, 84

by single slit, 80
Potential, velocity, 59

due to an acoustic dipole, 69

wave equation in terms of, 60
Potentials, cochlear, 212

Power delivered to a vibrating particle,

30

Power radiated, by double source, 70

by single source of spherical waves, 70
by source of plane waves, 70

Pulsing sphere, 61

Quality, sound, 5, 224

Radiation, from an acoustic piston gen-

erating plane waves, 70
from a double source, 68, 70

from a single source of spherical

waves, 70

into a tube closed at the far end, 112

into a tube open at the far end, 114

Raman, C. V., 166
Randall, R. H., 149
Ranke, O. F., 212
Ratio of specific heats, 39, 128

table for gases of, 129
Rayleigh, Lord, 1, 225, 236
Rayleigh disk, 236
Reciprocity principle, 247
Records, transducers for use on phono-

graph, 284
Reed-type wind instruments, 181
Reflection, at a boundary between two

media, 184

at a closed end of a pipe, 175
at a fixed end of a string, 155
at a free end of a string, 159
at an open end of a pipe, 174
partial, 190

Refraction of sound waves, 137
Relaxation oscillations, 166

Resonance, displacement, 27
electrical, 27

of Helmholtz resonator, 110
mechanical, 27

panel, 199

pipe, 173

string, 157

theories of ear, 211

velocity, 27

Resonator, Helmholtz, 107, 276
resonant frequency of, 110

Reverberant room, ideal, 292
Reverberation, 291

Reverberation time, 296
Rice, F. O., 130

Room, anechoic, 230

ideal reverberant, 292

resonant frequencies of a, 299
Rose, F. C, 149

Rudmose, H. W., 206

Sabine, W. C, 141, 293

Scales, musical, 226

Sears, F. W., 314

Sensitivity of microphones, 246
Shape, change of wave, 136

Shower, E. G., 219

Signaling, undersea, 313

Simple harmonic motion, 9
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Single source, 61

Sleeper, H. S., 232

Slit, diffraction pattern for a single,

75

Snow, W. B., 220

SOKOLOFF, VON S. J., 315

Source, double, 66

single, 61

standard sound, 233

Specific acoustic impedance, 103

Specific heats, ratio of, 39, 128

Sphere, pulsing, 61

sources equivalent to, 64

Spherical waves, differential equation

for, 58

general solution for, 58

specific acoustic impedance for, 106

Spiral of Cornu, 89, 90

Stationary waves, 151

in pipes, 172

along strings, 154

Steady-state solution for forced oscil-

lations, 25

Steinberg, J. C, 221

Stevens, S. S., 209, 219

Stewart, G. W., 225, 256

Strength of a source, 63

limitations on use of concept of, 65

String, vibration of, 152

for both ends fixed, 157

for both ends free, 159

for one end fixed, one end free, 162

when plucked, 164

Summation of SHM's, 11

Summation of vibrations of progres-

sively differing phase angle, 77

Superposition principle, 4

Telfair, D., 129

Temperature, effect of upon velocity of

sound, 129

Testing of materials with ultrasonic

waves, 315

Theorem, Fourier's, 16, 164

Thermophone, 233

Threshold of hearing, 52, 214

Time, reverberation, 296

Tracking of needle on phonograph

record, 286

Transducer, ideal electroacoustic, 262

reversible, 247

for use on phonograph records, 284

Transient behavior, of loudspeaker, 271

of particle, 32

Transmission coefficient, definition of,

for horn, 118

for direct radiator loudspeaker in

infinite plane baffle, 124

for long conical horn, 119

for long exponential horn, 120

Transmission of sound through parti-

tions, 301

Tube, impedance of closed, 112

impedance of open, 114

Kundt's, 132

Ultrasonic waves, attenuation of, 141

biological effects of, 317

diffraction of light by, 314

generators for, 309

receivers for, 311

testing of materials with, 315

Units, 6

Vector sum, of SHM's, 11

of vibrations differing progressively in

phase, 77

Velocity potential, 59

due to an acoustic dipole, 69

Velocity of sound, experimental deter-

mination of, in gases, 131

in liquids, 145

- in gases, 129

in kinetic theory, 132

for large amplitude waves, 134

in liquids, 145

in solids, 147

Vibration, of bars, 168

of columns of air, 177

of membranes, 166

of a particle, 2, 9, 20

of plates, 172

of a string, 152

Violin, 176

bowing of a, 166

Vocoder, 205

Voice, apparatus, 202

artificial, 208

VOLKMAN, J., 219
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Wallace, R. L., 301 Waves, in solids, 147
Wave analysis, 250 spherical, 58
Wave shape, change of, 136 along strings, 153
Wavelength, 4, 44 in three dimensions, 55

in water, 312 Wever, E. G., 213
Waves, bending of, 137 White, H. E., 88

in gases, 128 Wiener, F. M., 95
of large amplitude, 134 Wood, A. B., 303
in liquids, 145 Wood, R. W., 7
in membranes, 166
in pipes, 172 Zener, C, 149
plane, 37 Zones, laminar, of Fresnel, 87
in plates, 172 Zwislocki, J., 212



ANSWERS TO PROBLEMS

Chapter 1

1. Max displacement = x Tl

Max velocity = ooxm .

Max acceleration = u2xr,

3. x +V^¥Wf (A/m) t

5. (a) 4.93 cm. (b) 21°53/
.

7. (a) One mathematical beat, three

audible beats,

(b) Two mathematical beats and

two audible beats.

9. x = — [sin ut + J sin 3a>t + J sin 5co£

11. -•-;( 1 + ? Sm 2Tfl - 3 C0S ^fl

13. (a) Oscillatory.

(b) With damping, 390 cycles-sec-1
;

without damping, 504 cycles-

sec
-1

.

Chapter 2

T
2
5 cos 8-jrft

-

15. 6.23 gm.

1. Max particle displacement = £r,

Max particle velocity = £m .

Max dilatation = (27r/\)£m .

Max pressure = p c
2(27r/X)£TO .

1.8 X 10-9 erg-cm-3 .5. (a) ek

(b) ep = 1.8 X 10
-9 erg-cm-3 .

(c) I = 1.19 X 10-4 erg-cm -2
-sec

-1
.

(d) ek = ep = 1.8 X 10 -10 joule-m- 3
.

I = 1.19 X 10-7 joule-m -2
-sec

-1
.

7. (a) (Ua/(U h = 0.517.

(b) (Ua/(Uh = 0.517.

(c) (pm)a/(pm)h = 1.93.

3. £i is 180° out of phase with £2 .

£i is 180° out of phase with £2 .

pi is in phase with p 2 .

9. (a) Ic is 20 db higher than Ia .

(b) 7 &/7a = 10/1 • Ic/h = 10/1 Ic/Ia = 100/1.

Chapter 3

(a) $m = 10-3/r. 3. (a) $m = 1.5/r.

(b) *TO = 3.33 X 10-7 cm2-sec
-1

. (b) $TO = 8.5 X 10 -3 cm2-sec
-1

(c) £m = 6.32 X 10-9 cm-sec -1
. (c)

j:m = 4.98 X 10-2 cm-sec-1

(d) pm = 2.7 X 10-7 dyne-cm-2
. (d) pm — 2.13 dyne-cm-2

.

337
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5. (a) Incorrect. (b) Correct.

(c) Correct. (d) Incorrect.

7. (a) B' = 39.4 cm3-sec
-1

.

(b) $m = 1.57 X 10-3 cm2-sec
-1

.

(c) Vm = 2.54 X 10-3 dyne-cm-2
.

9. (a) B' = 78.8 cm3-sec
-1

.

(b) $m = 3.14 X 10-3 cm2-sec
-]

(c) pm = 5.08 X 10-3 dyne-cm-

11. (a) a -I****)

1.

(a)

3. (a)

(b)

5.

(b) (c)

{vr^m = 0707
(Pm)\

(Pm)\/10 _ 0.141,

(Pm)\

1.

3.

5.

r* dr

(b) For large values of r, 8
dr

(a) 8.66+J5.0.
(b) 4.93 - jO.870.

(c) 14.5+J2.58.
(d) 0.825 -jO.477.

(a) 1.23+^1.87.

(b) 1.85 - jO.326.

(c) (ce + df)+j(cf-de)

(a) 2= cos 0— j 2* sin 0.

£to sw

(b) 2^ COS 0.

Chapter 4

7. Ri = 24.6 cm.

R% = 45.8 cm.

#3 = 68.5 cm.

9. First order, 15°10'; second order,

31°30\

11. (b) The slope is the tangent of the

phase angle between the total

instantaneous pressure (due to a

given exposure of the wave
front) and the pressure contri-

bution originating at a point

directly opposite a.

13. (b) (pm)l/(Pm)2 = 0.51.

Chapter 5

7. (a) The frequency is reduced by the

factor 0.707.

(b) The frequency is increased by

the factor 1.41.

9.

•f (cycles-sec"
1

)

29.5

11. Z = 80+jl9.5ohms.
13. Approximately 0.7.

15. At approximately 188 cycles-sec
-1

.

17. At approximately 350 cycles-sec
-1

.

Chapter 6

1. Only at very high ultrasonic fre-

quencies is there any variation in

wave velocity with frequency

change.

3. c oc Vt. Although the density will

remain constant, the velocity will

change with temperature due to the

variation in the pressure of the en-

closed gas.
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5. (a) sm = 0.008.

(b) The peak value of the con-

densation found in (a) will

Chapter

3. (a) The harmonic frequencies are

given by / = nc/21, where the

integer n may have any value

except an integral multiple of 4.

(b) The 4th, 8th, 12th, etc., har-

monics are missing, since these

modes require a node at the

point of plucking.

5. (a) p and £ are out of phase by 90°

everywhere along the pipe.

Hence the average power flow

is zero.

(b) zs is infinite at the pressure

occur if the intensity level is

152 db.

7. 133 rpm.

7.

antinodes, zero at the pressure

nodes, reactive in between.

For resonant frequencies = (n) (217)

cycles-sec-1, where n is any integer.

There will be little cancellation,

however, since the dipole compo-
nents are widely separated in space.

8.26 X 106 ergs-sec-1 .

Due to the buckling of the paper

under the action of the axial force,

the paper along an element of the

cone may execute one-half of a

transverse vibration cycle during

one complete cycle of the axial mo-
tion.

1. (a) - = P2°2 ~ plCl
.

Si plCi + p2c2

(b) ^ = 2PiCi

Si C2(piCi -f p2c2)

3. (zs) 2 = 7.21 gm-cm^-sec"1
.

Chapter 8

5. prma = 6.35 dynes-cm-2.

7. (a) | lags p by 18°27\

(b) 6.8 ergs-sec
-1

.

9. No; because the reflected wave will

have spherical divergence.

Chapter 9

1. (a) No. (b) The throat and mouth
constitute an inefficient radiating

system at 80 cycles-sec-1 , (c) The
observed pitch is due to the ability

of the ear to supply the fundamental

of a harmonic series.

3. At 40 cycles-sec-1, about 70 db.

At 1000 cycles-sec-1, about 120 db.

At 10,000 cycles-sec-1, about 110 db.

5. Highly damped.

7. About 13,000 millisones.

9. (a) Percentage precision greatest

at medium and high frequencies,

(b) At 5 db level, 7.4 percent or

cycles-sec-1
, at 10 db level, 5.4 per-

cent or cycles-sec-1, at 20 db level,

4 percent or cycles-sec-1, at 60 db or

higher level, 3 percent or cycles-

sec-1 .

Chapter 10

1. Since the dimensions of the en- low frequencies, some of the wave
trances to the air channels become energy will be reflected due to dif-

less than the wavelength at the very fraction effects.
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3. (a) So that no phase differences in

pressure may exist throughout the

enclosure.

5. (a) A slight displacement away

from this position produces a torque

tending to displace the disk further

in the same direction, (b) A slight

displacement away from this posi-

tion produces a restoring torque.

7. The spacing should be small to

increase the sensitivity of the micro-

phone. The ratio of the spacing

dimension to the diameter should

be small to reduce edge effects so

9.

11.

that the change in capacitance may
be nearly proportional to the dia-

phragm displacement.

Not if the amplified sound is to be

received aurally.

(a) Possible existence of stationary

waves, especially at low frequencies,

where the damping by means of

tufts is more difficult. Dimensions

at the junction must be kept small

compared with the wavelength.

(b) No. (c) Best precision at the

middle audio frequencies.

1. (a) 58%. (b) 26.1%.

3. (a) _

Chapter 11

(b) No; since the radiation will fall

off rapidly below about 800 cycles-

sec
-1

. Also, the efficiency will be

very low.

5. 62 dynes.

800 Frequency in cycles-sec

/ . Zem
\(Bl)n0-*}\r + S(zs)r]

[r + S(zs)rY + [(com - f) + S(Zs)x~]

[(#0
210-9][(com - f) + S(Zs)x]

[(r + S(zs)R)f + [(o>m - f) + S(zs)x~]

9. (a) 1950 cycles-sec
-1

.

(b) 0.69 ohm.

(c) It will be lowered.

11. (a) The acoustic power output will

be reduced to \ of the original value,

(b) The acoustic power output will

remain unchanged.

Chapter 12

1. (a) Set up in the room a small

steady source of sound. Verify, by

means of a microphone, the con-

stancy of the acoustic pressure

throughout the room for all posi-

tions and orientations of the micro-

phone, (b) The energy density

will fall off with distance from the

sound source, although not accord-

ing to the inverse square law.

(c) The intensity will fall off in-

versely with the square of the dis-

tance from the source.

3. as = 0.13.

5. / = nc/4:R, where c is the velocity

of sound and n is any odd integer.

7. vrms = 3.65 X lO"2 dyne-cm-2
.
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